Poland 2019/1/12 Evan Chen

TWITCH SOLVES ISL

Episode 100

Problem

Let all numbers of form $x^2 + y^2$ where x, y are coprime integers be arranged in a sequence $z_1 < z_2 < z_3 < \ldots$ (So the sequence begins $z_1 = 2 = 1^1 + 1^2$, $z_2 = 5 = 1^2 + 2^2$, $z_3 = 10 = 1^2 + 3^2$, $z_4 = 13 = 2^2 + 3^2$.) Prove that there exist infinitely many values of n such that $z_n, z_{n+1}, \ldots, z_{n+2019}$ are odd.

Video

https://youtu.be/8edyF716Mr8

Solution

Call numbers in the sequence *good*, and the other positive integers *bad*. We will need the following number theoretic facts.

Claim. Any number with a 3 mod 4 factor is bad.

Proof. Follows directly from Fermat's Christmas theorem or quadratic reciprocity. \Box

Claim. Let t be a positive integer which is not a perfect square. Then there exists infinitely many primes p such that $p \equiv 3 \pmod{4}$ and -t is a quadratic residue modulo p.

Proof. By using quadratic reciprocity to show that some residue class works out, then using Dirichlet's theorem. \Box

Pick 2020 odd primes $q_0 < q_1 < \cdots < q_{2019}$. We will find a positive integer A such that

- $A^2 + q_0^2$, $A^2 + q_1^2$, ..., $A^2 + q_{2019}^2$ are all good.
- $A^2 + 2, A^2 + 4, A^2 + 6, \dots, A^2 + (q_{2019}^2 1)$ are all bad.

This takes three steps:

- 1. We require $A \perp q_0 q_1 \ldots q_{2019}$. This guarantees the goodness of $A^2 + q_i^2$.
- 2. We require $2 \mid A$. This means $A^2 + s^2$ is bad for any even integer s.
- 3. For each even non-square t in $[2, q_{2019}^2 1]$, we pick a prime p_t , different from any previously chosen prime, such that -t is a quadratic residue modulo p_t and $p_t \equiv 3 \pmod{4}$. Then we require $A + t \equiv 0 \pmod{p_t}$; this guarantees A + t is bad.