Schweitzer 2020/1

Evan Chen

Twitch Solves ISL

Episode 99

Problem

We say that two sequences of positive integers $\left(x_{n}\right)_{n \geq 1}$ and $\left(y_{n}\right)_{n \geq 1}$ are completely different if $x_{n} \neq y_{n}$ for all $n \in \mathbb{N}$. Let F be a function assigning a positive integer to every sequence of positive integers such that $F(x) \neq F(y)$ for any pair of completely different sequences x, y, and for constant sequences we have $F((k, k, \ldots))=k$. Prove that there exists n such that $F(x)=x_{n}$ for all sequences x.

Video

https://youtu.be/i1d3h_Rs9Iw

External Link

https://aops.com/community/p19213255

Solution

By permuting indices suitably, we are going to assume $F(1,2,3, \ldots)=1$ and show that F returns the first value.

Claim. $F\left(x_{\bullet}\right)$ always returns an element that appears in x_{\bullet}.
Proof. If $F\left(x_{\bullet}\right)=k$ and $k \notin x_{\bullet}$, then x_{\bullet} is completely different from (k, k, \ldots), yet $F(k, k, \ldots)=k$.

Claim. If x_{\bullet} is a sequence that contains only two different numbers, then $F\left(x_{\bullet}\right)=x_{1}$.
Proof. Call the two numbers $x_{1}=a$ and b. First, we resolve the case where $a, b \geq 2$. Indeed, note that

$$
F(b, 1,1,1, \ldots)=b
$$

since that sequence is completely different from $(1,2,3, \ldots)$ so its F-value cannot be 1 , hence must be b. But $(b, 1,1, \ldots)$ is completely different from $\left(x_{\bullet}\right)$ so we get $F\left(x_{\bullet}\right)=a$ as desired.

To deal with the case $a=1$, we pick any third number c not equal to 1 or b, and consider the sequence

$$
y_{n}= \begin{cases}b & x_{n}=1 \\ c & x_{n}=b .\end{cases}
$$

Now $F\left(y_{n}\right)=b$, and y_{n} is completely different from x_{n}. So this forces $F\left(x_{n}\right)=a$.
Similarly, to deal with the case $b=1$, we pick any third number c not equal to a or 1 , and consider the sequence

$$
y_{n}= \begin{cases}b & x_{n}=a \\ c & x_{n}=1 .\end{cases}
$$

Now $F\left(y_{n}\right)=b$, and y_{n} is completely different from x_{n}. So this forces $F\left(x_{n}\right)=a$ too.
We now finish the general case. Suppose for contradiction that

$$
F\left(a_{1}, a_{2}, \ldots\right)=r \neq a_{1} .
$$

Then we can construct a sequence b_{n} by

$$
b_{n}= \begin{cases}r & a_{n}=a_{1} \\ a_{1} & \text { otherwise }\end{cases}
$$

By construction, a_{n} is completely different from b_{n}. But the previous claim gives $F\left(b_{n}\right)=r$, contradiction.

