IMO 1997/6
 Evan Chen

Twitch Solves ISL

Episode 99

Problem

For each positive integer n, let $f(n)$ denote the number of ways of representing n as a sum of powers of 2 with nonnegative integer exponents. Representations which differ only in the ordering of their summands are considered to be the same. For instance, $f(4)=4$, because the number 4 can be represented in the following four ways: $4 ; 2+2$; $2+1+1 ; 1+1+1+1$.

Prove that for any integer $n \geq 3$ we have $2^{\frac{n^{2}}{4}}<f\left(2^{n}\right)<2^{\frac{n^{2}}{2}}$.

External Link

https://aops.com/community/p356713

Solution

It's clear that f is non-decreasing. By sorting by the number of 1 's we used, we have the equation

$$
f(N)=f\left(\left\lfloor\frac{N}{2}\right\rfloor\right)+f\left(\left\lfloor\frac{N}{2}\right\rfloor-1\right)+f\left(\left\lfloor\frac{N}{2}\right\rfloor-2\right)+\cdots+f(1)+f(0)
$$

Upper bound. We now prove the upper bound by induction. Indeed, the base case is trivial and for the inductive step we simply use (\star):

$$
f\left(2^{n}\right)=f\left(2^{n-1}\right)+f\left(2^{n-1}-1\right)+\cdots<2^{n-1} f\left(2^{n-1}\right)<2^{n-1} \cdot 2^{\frac{(n-1)^{2}}{2}}=2^{\frac{n^{2}}{2}-\frac{1}{2}}
$$

Lower bound. First, we contend that f is convex. We'll first prove this in the even case to save ourselves some annoyance:

Claim (f is basically convex). If $2 \mid a+b$ then we have $f(2 a)+f(2 b) \geq 2 f(a+b)$.
Proof. Since $f(2 k+1)=f(2 k)$, we will only prove the first equation. Assume WLOG $a \geq b$ and use (\star) on all three f expressions here; after subtracting repeated terms, the inequality then rewrites as

$$
\sum_{(a+b) / 2 \leq x \leq a} f(x) \geq \sum_{b \leq x \leq(a+b) / 2} f(x)
$$

This is true since there are an equal number of terms on each side and f is nondecreasing.

Claim. For each $1 \leq k<2^{n-1}$, we have

$$
f\left(2^{n-1}-k\right)+f(k+1) \geq 2 f\left(2^{n-2}\right)
$$

Proof. Use the fact that $f(2 t+1)=f(2 t)$ for all t and then apply convexity as above.
Now we can carry out the induction:

$$
f\left(2^{n}\right)=f\left(2^{n-1}\right)+f\left(2^{n-1}-1\right)+\cdots>2^{n-1} f\left(2^{n-2}\right)+f(0)>2^{n-1} 2^{\frac{(n-2)^{2}}{4}}=2^{\frac{n^{2}}{4}}
$$

