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Problem

For each positive integer n, let f(n) denote the number of ways of representing n as a
sum of powers of 2 with nonnegative integer exponents. Representations which differ
only in the ordering of their summands are considered to be the same. For instance,
f(4) =4, because the number 4 can be represented in the following four ways: 4; 2 + 2;
2414+ 11 4+1+14+1. . ,

Prove that for any integer n > 3 we have 27 < f(2") < 2'7.
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Solution

It’s clear that f is non-decreasing. By sorting by the number of 1’s we used, we have the
equation
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Upper bound. We now prove the upper bound by induction. Indeed, the base case is
trivial and for the inductive step we simply use (¥):
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Lower bound. First, we contend that f is convex. We’ll first prove this in the even case
to save ourselves some annoyance:

Claim (f is basically convex). If 2 | a + b then we have f(2a) + f(2b) > 2f (a + b).

Proof. Since f(2k + 1) = f(2k), we will only prove the first equation. Assume WLOG
a > b and use (%) on all three f expressions here; after subtracting repeated terms, the
inequality then rewrites as
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This is true since there are an equal number of terms on each side and f is nondecreasing.
O

Claim. For each 1 < k < 2" ! we have
F@7H = k) + f(k+1) > 2f(2"77)
Proof. Use the fact that f(2t+1) = f(2t) for all ¢ and then apply convexity as above. [

Now we can carry out the induction:
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