MR J560

Evan Chen

Twitch Solves ISL

Episode 91

Problem

Show that for all positive reals a, b, c,

$$
\frac{2}{a^{2}}+\frac{5}{b^{2}}+\frac{45}{c^{2}}>\frac{16}{(a+b)^{2}}+\frac{24}{(b+c)^{2}}+\frac{48}{(c+a)^{2}} .
$$

Video

https://youtu.be/xrAkxr6mB9w

Solution

By Holder inequality we generally have

$$
\frac{u}{x^{2}}+\frac{v}{y^{2}} \geq\left(u^{1 / 3}+v^{1 / 3}\right)^{3} \cdot \frac{1}{(x+y)^{2}}
$$

for any u, v, x, y. Therefore, we will be done if we can find choices $0 \leq r \leq 2,0 \leq s \leq 5$, $0 \leq t \leq 45$ such that
with at least one inequality being strict.
The official solution uses the choices $(r, s, t)=(1,1,36)$ in which case each of the inequalities above is true by AM-GM.

Remark. More blunt approaches exist by simply randomly guessing, say:

$$
\begin{aligned}
r & =2 \cdot 0.9^{3}=1.458 \\
s & =5-(1.1 \cdot \sqrt[3]{2})^{3}=5-2.662=2.338 \\
t & =45-(\sqrt[3]{24}-\sqrt[3]{2.338})^{3} \\
& =45-24+2.338+3 \sqrt[3]{24^{2} \cdot 2.338}-3 \sqrt[3]{24 \cdot 2.338^{2}} \\
& =23.338+3 \sqrt[3]{576 \cdot 2.338}-3 \sqrt[3]{24 \cdot 2.338^{2}} \\
& >23.338+3 \sqrt[3]{1346.688}-3 \sqrt[3]{138.24} \\
& >23.338+33-16=39.338
\end{aligned}
$$

$$
t^{1 / 3}+(2-r)^{1 / 3}=\sqrt[3]{39.338}+\sqrt[3]{0.542}
$$

So we wish to show

$$
\sqrt[3]{39.338}+\sqrt[3]{.542}>\sqrt[3]{48}
$$

but $\sqrt[3]{39.338}>3.4$ since $3.4^{3}=11.56 \cdot 3.4=39.304$, and $\sqrt[3]{.542}>0.8$, while plainly $\sqrt[3]{48}<4$.

$$
\begin{aligned}
& r^{1 / 3}+(5-s)^{1 / 3} \geq 2 \sqrt[3]{2}=\sqrt[3]{16} \\
& s^{1 / 3}+(45-t)^{1 / 3} \geq 2 \sqrt[3]{3}=\sqrt[3]{24} \\
& t^{1 / 3}+(2-r)^{1 / 3} \geq 2 \sqrt[3]{6}=\sqrt[3]{48}
\end{aligned}
$$

