IMO 1999/6
 Evan Chen
 Twitch Solves ISL
 Episode 91

Problem

Find all the functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-f(y))=f(f(y))+x f(y)+f(x)-1
$$

for all $x, y \in \mathbb{R}$.

Video

https://youtu.be/rlMW65i_VtI

External Link

https://aops.com/community/p131856

Solution

The answer is $f(x)=-\frac{1}{2} x^{2}+1$ which obviously works.
For the other direction, first note that

$$
P(f(y), y) \Longrightarrow 2 f(f(y))+f(y)^{2}-1=f(0)
$$

We introduce the notation $c=\frac{f(0)-1}{2}$, and $S=\operatorname{img} f$. Then the above assertion says

$$
f(s)=-\frac{1}{2} s^{2}+(c+1)
$$

Thus, the given functional equation can be rewritten as

$$
Q(x, s): f(x-s)=-\frac{1}{2} s^{2}+s x+f(x)-c
$$

Claim (Main claim). We can find a function $g: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
f(x-z)=z x+f(x)+g(z)
$$

Proof. If $z \neq 0$, the idea is to fix a nonzero value $s_{0} \in S$ (it exists) and then choose x_{0} such that $-\frac{1}{2} s_{0}^{2}+s_{0} x_{0}-c=z$. Then, $Q\left(x_{0}, s\right)$ gives an pair (u, v) with $u-v=z$.

But now for any x, using $Q(x+v, u)$ and $Q(x,-v)$ gives

$$
\begin{aligned}
f(x-z)-f(x) & =f(x-u+v)-f(x)=f(x+v)-f(x)+u(x+v)-\frac{1}{2} u^{2}+c \\
& =-v x-\frac{1}{2} s^{2}-c+u(x+v)-\frac{1}{2} u^{2}+c \\
& =-v x-\frac{1}{2} v^{2}+u(x+v)-\frac{1}{2} u^{2}=z x+g(z)
\end{aligned}
$$

where $g(z)=-\frac{1}{2}\left(u^{2}+v^{2}\right)$ depends only on z.
Now, let

$$
h(x):=\frac{1}{2} x^{2}+f(x)-(2 c+1)
$$

so $h(0)=0$.
Claim. The function h is additive.
Proof. We just need to rewrite $(\boldsymbol{\uparrow})$. Letting $x=z$ in $(\boldsymbol{\phi})$, we find that actually $g(x)=f(0)-x^{2}-f(x)$. Using the definition of h now gives

$$
h(x-z)=h(x)+h(z)
$$

To finish, we need to remember that f, hence h, is known on the image

$$
S=\{f(x) \mid x \in \mathbb{R}\}=\left\{\left.h(x)-\frac{1}{2} x^{2}+(2 c+1) \right\rvert\, x \in \mathbb{R}\right\}
$$

Thus, we derive

$$
\begin{equation*}
h\left(h(x)-\frac{1}{2} x^{2}+(2 c+1)\right)=-c \quad \forall x \in \mathbb{R} \tag{৫}
\end{equation*}
$$

We can take the following two instances of Ω :

$$
\begin{aligned}
& h\left(h(2 x)-2 x^{2}+(2 c+1)\right)=-c \\
& h\left(2 h(x)-x^{2}+2(2 c+1)\right)=-2 c .
\end{aligned}
$$

Now subtracting these and using $2 h(x)=h(2 x)$ gives

$$
c=h\left(-x^{2}-(2 c+1)\right) .
$$

Together with h additive, this implies readily h is constant. That means $c=0$ and the problem is solved.

