IMO 1999/6 Evan Chen

TWITCH SOLVES ISL

Episode 91

Problem

Find all the functions $f \colon \mathbb{R} \to \mathbb{R}$ such that

$$f(x - f(y)) = f(f(y)) + xf(y) + f(x) - 1$$

for all $x, y \in \mathbb{R}$.

Video

https://youtu.be/rlMW65i_VtI

External Link

https://aops.com/community/p131856

Solution

The answer is $f(x) = -\frac{1}{2}x^2 + 1$ which obviously works.

For the other direction, first note that

$$P(f(y), y) \implies 2f(f(y)) + f(y)^2 - 1 = f(0).$$

We introduce the notation $c = \frac{f(0)-1}{2}$, and $S = \operatorname{img} f$. Then the above assertion says

$$f(s) = -\frac{1}{2}s^2 + (c+1).$$

Thus, the given functional equation can be rewritten as

$$Q(x,s): f(x-s) = -\frac{1}{2}s^2 + sx + f(x) - c.$$

Claim (Main claim). We can find a function $g \colon \mathbb{R} \to \mathbb{R}$ such that

$$f(x-z) = zx + f(x) + g(z). \qquad (\clubsuit).$$

Proof. If $z \neq 0$, the idea is to fix a nonzero value $s_0 \in S$ (it exists) and then choose x_0 such that $-\frac{1}{2}s_0^2 + s_0x_0 - c = z$. Then, $Q(x_0, s)$ gives an pair (u, v) with u - v = z. But now for any x using Q(x + v, v) and Q(x - v) gives

But now for any x, using Q(x + v, u) and Q(x, -v) gives

$$f(x-z) - f(x) = f(x-u+v) - f(x) = f(x+v) - f(x) + u(x+v) - \frac{1}{2}u^2 + c$$
$$= -vx - \frac{1}{2}s^2 - c + u(x+v) - \frac{1}{2}u^2 + c$$
$$= -vx - \frac{1}{2}v^2 + u(x+v) - \frac{1}{2}u^2 = zx + g(z)$$

where $g(z) = -\frac{1}{2}(u^2 + v^2)$ depends only on z.

Now, let

$$h(x) \coloneqq \frac{1}{2}x^2 + f(x) - (2c+1),$$

so h(0) = 0.

Claim. The function h is additive.

Proof. We just need to rewrite (\spadesuit) . Letting x = z in (\spadesuit) , we find that actually $g(x) = f(0) - x^2 - f(x)$. Using the definition of h now gives

$$h(x-z) = h(x) + h(z).$$

To finish, we need to remember that f, hence h, is known on the image

$$S = \{f(x) \mid x \in \mathbb{R}\} = \left\{h(x) - \frac{1}{2}x^2 + (2c+1) \mid x \in \mathbb{R}\right\}.$$

Thus, we derive

$$h\left(h(x) - \frac{1}{2}x^2 + (2c+1)\right) = -c \qquad \forall x \in \mathbb{R}.$$
 (\heartsuit)

We can take the following two instances of \heartsuit :

$$h(h(2x) - 2x^{2} + (2c+1)) = -c$$

$$h(2h(x) - x^{2} + 2(2c+1)) = -2c.$$

Now subtracting these and using 2h(x) = h(2x) gives

$$c = h \left(-x^2 - (2c+1) \right).$$

Together with h additive, this implies readily h is constant. That means c=0 and the problem is solved.