USEMO 2021/4

Evan Chen

Twitch Solves ISL

Episode 90

Problem

Let $A B C$ be a triangle with circumcircle ω, and let X be the reflection of A in B. Line $C X$ meets ω again at D. Lines $B D$ and $A C$ meet at E, and lines $A D$ and $B C$ meet at F. Let M and N denote the midpoints of $A B$ and $A C$.

Can line $E F$ share a point with the circumcircle of triangle $A M N$?

Video

https://youtu.be/PhNIee2CzdY

External Link

https://aops.com/community/p23524100

Solution

The answer is no, they never intersect.
Classical solution, by author. Let P denote the midpoint of $\overline{A D}$, which

- lies on $\overline{B N}$, since $\overline{B N} \| \overline{C X}$; and
- lies on $(A M N)$, since it's homothetic to $(A B C)$ through A with factor $\frac{1}{2}$.

Now, note that

$$
\begin{aligned}
& \measuredangle F B P=\measuredangle C B N=\measuredangle B C D=\measuredangle B A D=\measuredangle B A F \Longrightarrow F B^{2}=F P \cdot F A \\
& \measuredangle E B N=\measuredangle E D C=\measuredangle B D C=\measuredangle B A C=\measuredangle B A E \Longrightarrow E B^{2}=E N \cdot E A .
\end{aligned}
$$

This means that line $E F$ is the radical axis of the circle centered at B with radius zero, and the circumcircle of triangle $A M N$. Since B obviously lies outside ($A M N$), the disjointness conclusion follows.

Projective solution, by Ankit Bisain. In this approach we are still going to prove that $\overline{E F}$ is the radical axis of $(A M N)$ and the circle of radius zero at B, but we are not going to use the point P, or even points E and F.

Instead, let $Y=\overline{E F} \cap \overline{A B}$, which by Brokard's theorem on $A B D C$ satisfies $(A B ; X Y)=$ -1 . Since $X B=X A$, it follows that $A Y: Y B=2$. From here it is straightforward to verify that

$$
Y B^{2}=\frac{1}{9} A B^{2}=Y M \cdot Y A .
$$

Thus Y lies on the radical axis.
Finally, by Brokard's theorem again, if O is the center of ω then $\overline{O X} \perp \overline{E F}$. Taking a homothety with scale factor 2 at A, it follows that the line through B and the center of $(A M N)$ is perpendicular to $\overline{E F}$.

Since $\overline{E F}$ contains Y, it now follows that $\overline{E F}$ is the radical axis, as claimed.

Solution with inversion, projective, and Cartesian coordinates, by Ankan Bhattacharya.

 In what follows, let O be the center of ω. Note that Brokard's theorem gives that $\overline{E F}$ is the polar of X.Note that since none of E, F, X are points at infinity, O is different from all three.
We consider inversion in ω to eliminate the polar:

- The circumcircle of $\triangle A M N$, i.e. the circle with diameter $\overline{A O}$, is sent to the line ℓ tangent to ω at A.
- The line $E F$, as the polar of X, is sent to the circle with diameter $\overline{O X}$. (It is indeed a circle, because O does not lie on line $E F$.)

Thus, if the posed question is true, then we see that ℓ intersects ($O X$). We claim this is impossible.

Establish Cartesian coordinates with $A=(0,0)$ and $O=(2,0)$, so ℓ is the y-axis. Let T be the center of $(O X)$: the midpoint of $\overline{O X}$. Observe:

- B lies on the circle with center $(2,0)$ and radius 2 .
- X lies on the circle with center $(4,0)$ and radius 4.
- T lies on the circle with center $(3,0)$ and radius 2 .

Thus, let the coordinates of T be (x, y), with $(x-3)^{2}+y^{2}=4$. The intersection of ℓ and ($O X$) being nonempty is equivalent to

$$
\begin{aligned}
& d(T, \ell)^{2} \leq O T^{2} \\
& \Longleftrightarrow x^{2} \leq(x-2)^{2}+y^{2} \\
& \Longleftrightarrow x^{2} \leq(x-2)^{2}+\left[4-(x-3)^{2}\right] \\
\Longleftrightarrow & (x-1)^{2} \leq 0,
\end{aligned}
$$

or $x=1$ (which forces $y=0$); i.e. $T=(1,0)$. However, this forces

$$
B=(0,0)=A,
$$

which is not permitted. Thus, line ℓ cannot share a point with $(O X)$, and so line $E F$ cannot share a point with $(A M N)$.

