USEMO 2021/4 Evan Chen

TWITCH SOLVES ISL

Episode 90

Problem

Let ABC be a triangle with circumcircle ω , and let X be the reflection of A in B. Line CX meets ω again at D. Lines BD and AC meet at E, and lines AD and BC meet at F. Let M and N denote the midpoints of AB and AC.

Can line EF share a point with the circumcircle of triangle AMN?

Video

https://youtu.be/PhNIee2CzdY

External Link

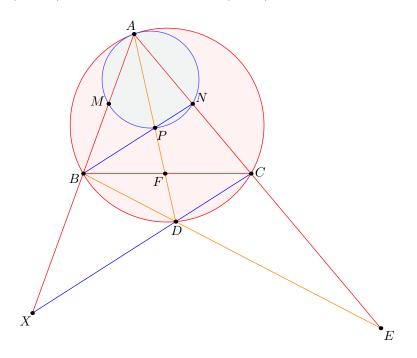
https://aops.com/community/p23524100

Solution

The answer is no, they never intersect.

Classical solution, by author. Let P denote the midpoint of \overline{AD} , which

- lies on \overline{BN} , since $\overline{BN} \parallel \overline{CX}$; and
- lies on (AMN), since it's homothetic to (ABC) through A with factor $\frac{1}{2}$.



Now, note that

$$\measuredangle FBP = \measuredangle CBN = \measuredangle BCD = \measuredangle BAD = \measuredangle BAF \implies FB^2 = FP \cdot FA$$
$$\measuredangle EBN = \measuredangle EDC = \measuredangle BDC = \measuredangle BAC = \measuredangle BAE \implies EB^2 = EN \cdot EA.$$

This means that line EF is the radical axis of the circle centered at B with radius zero, and the circumcircle of triangle AMN. Since B obviously lies outside (AMN), the disjointness conclusion follows.

Projective solution, by Ankit Bisain. In this approach we are still going to prove that \overline{EF} is the radical axis of (AMN) and the circle of radius zero at B, but we are not going to use the point P, or even points E and F.

Instead, let $Y = \overline{EF} \cap \overline{AB}$, which by Brokard's theorem on ABDC satisfies (AB; XY) = -1. Since XB = XA, it follows that AY : YB = 2. From here it is straightforward to verify that

$$YB^2 = \frac{1}{9}AB^2 = YM \cdot YA$$

Thus Y lies on the radical axis.

Finally, by Brokard's theorem again, if O is the center of ω then $\overline{OX} \perp \overline{EF}$. Taking a homothety with scale factor 2 at A, it follows that the line through B and the center of (AMN) is perpendicular to \overline{EF} .

Since \overline{EF} contains Y, it now follows that \overline{EF} is the radical axis, as claimed.

Solution with inversion, projective, and Cartesian coordinates, by Ankan Bhattacharya. In what follows, let O be the center of ω . Note that Brokard's theorem gives that \overline{EF} is the polar of X.

Note that since none of E, F, X are points at infinity, O is different from all three. We consider inversion in ω to eliminate the polar:

- The circumcircle of $\triangle AMN$, i.e. the circle with diameter \overline{AO} , is sent to the line ℓ tangent to ω at A.
- The line EF, as the polar of X, is sent to the circle with diameter \overline{OX} . (It is indeed a circle, because O does not lie on line EF.)

Thus, if the posed question is true, then we see that ℓ intersects (OX). We claim this is impossible.

Establish Cartesian coordinates with A = (0,0) and O = (2,0), so ℓ is the y-axis. Let T be the center of (OX): the midpoint of \overline{OX} . Observe:

- B lies on the circle with center (2,0) and radius 2.
- X lies on the circle with center (4,0) and radius 4.
- T lies on the circle with center (3,0) and radius 2.

Thus, let the coordinates of T be (x, y), with $(x - 3)^2 + y^2 = 4$. The intersection of ℓ and (OX) being nonempty is equivalent to

$$d(T,\ell)^2 \le OT^2$$

$$\iff x^2 \le (x-2)^2 + y^2$$

$$\iff x^2 \le (x-2)^2 + [4 - (x-3)^2]$$

$$\iff (x-1)^2 \le 0,$$

or x = 1 (which forces y = 0); i.e. T = (1, 0). However, this forces

$$B = (0,0) = A,$$

which is not permitted. Thus, line ℓ cannot share a point with (OX), and so line EF cannot share a point with (AMN).