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Find all integers n > 1 such that 2 — 1 has exactly n positive integer divisors.
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https://youtu.be/kjcY8qQAi5U
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Solution

The valid n are 1, 2, 4, 6, 8, 16, 32. They can be verified to work through inspection, using
the well known fact that the Fermat prime F; = 22 4+ 1 is indeed prime for i = 0,1,...,4
(but not prime when i = 5).

We turn to the proof that these are the only valid values of n. In both solutions that
follow, d(n) is the divisor counting function.

First approach (from author). Let d be the divisor count function. Now suppose n
works, and write n = 2¥m with m odd. Observe that

2" —1=(2" —1)2" + )22 +1)--- (22 4 1),
and all £ 4 1 factors on the RHS are pairwise coprime. In particular,
A(2™ — 1)d(2™ 4+ 1)d(2¥™ + 1) ---d(22" "™ 4+ 1) = 2¥m.
Recall the following fact, which follows from Mihdilescu’s theorem.

Lemma. 2" — 1 is a square if and only if r = 1, and 2" + 1 is a square if and only if
r=3.

Now, if m > 5, then all £ 4+ 1 factors on the LHS are even, a contradiction. Thus
m < 3. We deal with both cases.
If m = 1, then the inequalities

d2¥ —1)=1

a2* +1) > 2

a2 +1)>2

d2¥ " +1)>2

mean that it is necessary and sufficient for all of 22" ¢ 1, 22 4 1, ..., 22" 11 to be
prime. As mentioned at the start of the problem, this happens if and only if £ < 5, giving
the answers n € {1,2,4, 8,16, 32}.
If m = 3, then the inequalities
d(2*? —1)=2
d2¥? +1)=3
d(2¥% +1)>4

A2 1 1) >4

mean that £ > 2 does not lead to a solution. Thus k£ < 1, and the only valid possibility
turns out to be n = 6.
Consolidating both cases, we obtain the claimed answer n € {1,2,4,6,8,16,32}.
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Second approach using Zsigmondy (suggested by reviewers). There are several
variations of this Zsigmondy solution; we present the approach found by Nikolai Beluhov.

Assume n > 7, and let n = [[}"p;* be the prime factorization with e; > 0 for each 1.
Define the numbers

Ty =27 —1

Ty = 272" — 1

T = 277" — 1.

We are going to use two facts about Tj.

Claim. The T; are pairwise relatively prime and

m
[[712 -1
=1

Proof. Each T; divides 2" — 1, and the relatively prime part follows from the identity
ged(2% —1,2¢ — 1) = 28cd@y) _ 1, O

Claim. The number T; has at least e; distinct prime factors.

Proof. This follows from Zsigmondy’s theorem: each successive quotient (2°*"" —1) /(2P" —
1) has a new prime factor. O

Claim (Main claim). Assume n satisfies the problem conditions. Then both the previous
claims are sharp in the following sense: each T; has exactly e; distinct prime divisors, and

m
{primes dividing HTZ} = {primes dividing 2" — 1}.
i=1
Proof. Rather than try to give a size contradiction directly from here, the idea is to
define an ancillary function
s(z) =Y vyla)

p prime

which computes the sum of the exponents in the prime factorization. For example
s(n)=e1+ex+ -+ en.

On the other hand, using the earlier claim, we get
s(d2" — 1)) > s (d (HT)) >ep4eat o+ em = s(n).

But we were told that d(2" — 1) = n; hence equality holds in all our estimates, as
needed. O

At this point, we may conclude directly that m = 1 in any solution; indeed if m > 2
and n > 7, Zsigmondy’s theorem promises a primitive prime divisor of 2" — 1 not dividing
any of the T;.

Now suppose n = p©, and d(2pe —1) = n = p°. Since 2P° — 1 has exactly e distinct
prime divisors, this can only happen if in fact

L qf_lqg_l gt
for some distinct primes ¢1, g2, ..., ¢.. This is impossible modulo 4 unless p = 2.
So we are left with just the case n = 2¢, and need to prove e < 5. The proof consists of

simply remarking that 22” 41 is known to not be prime, and hence for e > 6 the number
22° — 1 always has at least e + 1 distinct prime factors.



