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Problem

Find all integers n ≥ 1 such that 2n − 1 has exactly n positive integer divisors.

Video

https://youtu.be/V-9UBJr7aDI
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Solution

The valid n are 1, 2, 4, 6, 8, 16, 32. They can be verified to work through inspection, using
the well known fact that the Fermat prime Fi = 22

i
+ 1 is indeed prime for i = 0, 1, . . . , 4

(but not prime when i = 5).
We turn to the proof that these are the only valid values of n. In both solutions that

follow, d(n) is the divisor counting function.

First approach (from author) Let d be the divisor count function. Now suppose n
works, and write n = 2km with m odd. Observe that

2n − 1 = (2m − 1)(2m + 1)(22m + 1) · · · (22k−1m + 1),

and all k + 1 factors on the RHS are pairwise coprime. In particular,

d(2m − 1)d(2m + 1)d(22m + 1) · · · d(22k−1m + 1) = 2km.

Recall the following fact, which follows from Mihǎilescu’s theorem.

Lemma. 2r − 1 is a square if and only if r = 1, and 2r +1 is a square if and only if r = 3.

Now, if m ≥ 5, then all k + 1 factors on the LHS are even, a contradiction. Thus
m ≤ 3. We deal with both cases.
If m = 1, then the inequalities

d(22
0 − 1) = 1

d(22
0
+ 1) ≥ 2

d(22
1
+ 1) ≥ 2

...

d(22
k−1

+ 1) ≥ 2

mean that it is necessary and sufficient for all of 22
0
+ 1, 22

1
+ 1, . . . , 22

k−1
+ 1 to be

prime. As mentioned at the start of the problem, this happens if and only if k ≤ 5, giving
the answers n ∈ {1, 2, 4, 8, 16, 32}.

If m = 3, then the inequalities

d(23·2
0 − 1) = 2

d(23·2
0
+ 1) = 3

d(23·2
1
+ 1) ≥ 4

...

d(23·2
k−1

+ 1) ≥ 4

mean that k ≥ 2 does not lead to a solution. Thus k ≤ 1, and the only valid possibility
turns out to be n = 6.
Consolidating both cases, we obtain the claimed answer n ∈ {1, 2, 4, 6, 8, 16, 32}.
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Second approach using Zsigmondy (suggested by reviewers) There are several vari-
ations of this Zsigmondy solution; we present the approach found by Nikolai Beluhov.
Assume n ≥ 7, and let n =

∏m
1 peii be the prime factorization with ei > 0 for each i.

Define the numbers

T1 = 2p
e1
1 − 1

T2 = 2p
e2
2 − 1

...

Tm = 2p
em
m − 1.

We are going to use two facts about Ti.

Claim. The Ti are pairwise relatively prime and
m∏
i=1

Ti | 2n − 1.

Proof. Each Ti divides 2
n − 1, and the relatively prime part follows from the identity

gcd(2x − 1, 2y − 1) = 2gcd(x,y) − 1.

Claim. The number Ti has at least ei distinct prime factors.

Proof. This follows from Zsigmondy’s theorem: each successive quotient (2p
k+1−1)/(2p

k−
1) has a new prime factor.

Claim (Main claim). Assume n satisfies the problem conditions. Then both the previous
claims are sharp in the following sense: each Ti has exactly ei distinct prime divisors, and{

primes dividing
m∏
i=1

Ti

}
= {primes dividing 2n − 1} .

Proof. Rather than try to give a size contradiction directly from here, the idea is to
define an ancillary function

s(x) =
∑

p prime

νp(x)

which computes the sum of the exponents in the prime factorization. For example

s(n) = e1 + e2 + · · ·+ em.

On the other hand, using the earlier claim, we get

s(d(2n − 1)) ≥ s
(
d
(∏

Ti

))
≥ e1 + e2 + · · ·+ em = s(n).

But we were told that d(2n − 1) = n; hence equality holds in all our estimates, as
needed.

At this point, we may conclude directly that m = 1 in any solution; indeed if m ≥ 2
and n ≥ 7, Zsigmondy’s theorem promises a primitive prime divisor of 2n−1 not dividing
any of the Ti.
Now suppose n = pe, and d(2p

e − 1) = n = pe. Since 2p
e − 1 has exactly e distinct

prime divisors, this can only happen if in fact

2p
e − 1 = qp−1

1 qp−1
2 . . . qp−1

e

for some distinct primes q1, q2, . . . , qe. This is impossible modulo 4 unless p = 2.
So we are left with just the case n = 2e, and need to prove e ≤ 5. The proof consists of

simply remarking that 22
5
+ 1 is known to not be prime, and hence for e ≥ 6 the number

22
e − 1 always has at least e+ 1 distinct prime factors.
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