USEMO 2021/2 Evan Chen

TWITCH SOLVES ISL

Episode 89

Problem

Find all integers $n \ge 1$ such that $2^n - 1$ has exactly n positive integer divisors.

Video

https://youtu.be/V-9UBJr7aDI

Solution

The valid *n* are 1, 2, 4, 6, 8, 16, 32. They can be verified to work through inspection, using the well known fact that the Fermat prime $F_i = 2^{2^i} + 1$ is indeed prime for $i = 0, 1, \ldots, 4$ (but not prime when i = 5).

We turn to the proof that these are the only valid values of n. In both solutions that follow, d(n) is the divisor counting function.

First approach (from author) Let d be the divisor count function. Now suppose n works, and write $n = 2^k m$ with m odd. Observe that

$$2^{n} - 1 = (2^{m} - 1)(2^{m} + 1)(2^{2m} + 1) \cdots (2^{2^{k-1}m} + 1),$$

and all k + 1 factors on the RHS are pairwise coprime. In particular,

$$d(2^m - 1)d(2^m + 1)d(2^{2m} + 1) \cdots d(2^{2^{k-1}m} + 1) = 2^k m.$$

Recall the following fact, which follows from Mihǎilescu's theorem.

Lemma. $2^r - 1$ is a square if and only if r = 1, and $2^r + 1$ is a square if and only if r = 3.

Now, if $m \ge 5$, then all k + 1 factors on the LHS are even, a contradiction. Thus $m \le 3$. We deal with both cases.

If m = 1, then the inequalities

$$d(2^{2^{0}} - 1) = 1$$
$$d(2^{2^{0}} + 1) \ge 2$$
$$d(2^{2^{1}} + 1) \ge 2$$
$$\vdots$$
$$d(2^{2^{k-1}} + 1) \ge 2$$

mean that it is necessary and sufficient for all of $2^{2^0} + 1$, $2^{2^1} + 1$, ..., $2^{2^{k-1}} + 1$ to be prime. As mentioned at the start of the problem, this happens if and only if $k \leq 5$, giving the answers $n \in \{1, 2, 4, 8, 16, 32\}$.

If m = 3, then the inequalities

$$d(2^{3 \cdot 2^{0}} - 1) = 2$$

$$d(2^{3 \cdot 2^{0}} + 1) = 3$$

$$d(2^{3 \cdot 2^{1}} + 1) \ge 4$$

$$\vdots$$

$$d(2^{3 \cdot 2^{k-1}} + 1) \ge 4$$

mean that $k \ge 2$ does not lead to a solution. Thus $k \le 1$, and the only valid possibility turns out to be n = 6.

Consolidating both cases, we obtain the claimed answer $n \in \{1, 2, 4, 6, 8, 16, 32\}$.

Define the numbers

Second approach using Zsigmondy (suggested by reviewers) There are several variations of this Zsigmondy solution; we present the approach found by Nikolai Beluhov. Assume $n \ge 7$, and let $n = \prod_{i=1}^{m} p_i^{e_i}$ be the prime factorization with $e_i > 0$ for each i.

$$T_{1} = 2^{p_{1}^{e_{1}}} - 1$$
$$T_{2} = 2^{p_{2}^{e_{2}}} - 1$$
$$\vdots$$
$$T_{m} = 2^{p_{m}^{e_{m}}} - 1.$$

We are going to use two facts about T_i .

Claim. The T_i are pairwise relatively prime and

$$\prod_{i=1}^m T_i \mid 2^n - 1.$$

Proof. Each T_i divides $2^n - 1$, and the relatively prime part follows from the identity $gcd(2^x - 1, 2^y - 1) = 2^{gcd(x,y)} - 1$.

Claim. The number T_i has at least e_i distinct prime factors.

Proof. This follows from Zsigmondy's theorem: each successive quotient $(2^{p^{k+1}}-1)/(2^{p^k}-1)$ has a new prime factor.

Claim (Main claim). Assume n satisfies the problem conditions. Then both the previous claims are sharp in the following sense: each T_i has exactly e_i distinct prime divisors, and

$$\left\{ \text{primes dividing } \prod_{i=1}^{m} T_i \right\} = \left\{ \text{primes dividing } 2^n - 1 \right\}.$$

Proof. Rather than try to give a size contradiction directly from here, the idea is to define an ancillary function

$$s(x) = \sum_{p \text{ prime}} \nu_p(x)$$

which computes the sum of the exponents in the prime factorization. For example

$$s(n) = e_1 + e_2 + \dots + e_m$$

On the other hand, using the earlier claim, we get

$$s(d(2^n - 1)) \ge s\left(d\left(\prod T_i\right)\right) \ge e_1 + e_2 + \dots + e_m = s(n).$$

But we were told that $d(2^n - 1) = n$; hence equality holds in all our estimates, as needed.

At this point, we may conclude directly that m = 1 in any solution; indeed if $m \ge 2$ and $n \ge 7$, Zsigmondy's theorem promises a primitive prime divisor of $2^n - 1$ not dividing any of the T_i .

Now suppose $n = p^e$, and $d(2^{p^e} - 1) = n = p^e$. Since $2^{p^e} - 1$ has exactly e distinct prime divisors, this can only happen if in fact

$$2^{p^e} - 1 = q_1^{p-1} q_2^{p-1} \dots q_e^{p-1}$$

for some distinct primes q_1, q_2, \ldots, q_e . This is impossible modulo 4 unless p = 2.

So we are left with just the case $n = 2^e$, and need to prove $e \le 5$. The proof consists of simply remarking that $2^{2^5} + 1$ is known to not be prime, and hence for $e \ge 6$ the number $2^{2^e} - 1$ always has at least e + 1 distinct prime factors.