IMO 1999/5

Evan Chen

Twitch Solves ISL

Episode 88

Problem

Two circles Ω_{1} and Ω_{2} touch internally the circle Ω in M and N and the center of Ω_{2} is on Ω_{1}. The common chord of the circles Ω_{1} and Ω_{2} intersects Ω in A and B Lines $M A$ and $M B$ intersects Ω_{1} in C and D. Prove that Ω_{2} is tangent to $C D$.

Video

https://youtu.be/V-9UBJr7aDI

External Link

https://aops.com/community/p131838

Solution

Let P and Q be the centers of Ω_{1} and Ω_{2}.
Let line $M Q$ meet Ω_{1} again at W, the homothetic image of Q under $\Omega_{1} \rightarrow \Omega$.
Meanwhile, let T be the intersection of segment $P Q$ with Ω_{2}, and let L be its homothetic image on Ω. Since $\overline{P T Q} \perp \overline{A B}$, it follows $\overline{L W}$ is a diameter of Ω. Let O be its center.

Claim. $M N T Q$ is cyclic.
Proof. By Reim: $\measuredangle T Q M=\measuredangle L W M=\measuredangle L N M=\measuredangle T N M$.
Let E be the midpoint of $\overline{A B}$.
Claim. $O E M N$ is cyclic.
Proof. By radical axis, the lines $M M, N N, A E B$ meet at a point R. Then $O E M N$ is on the circle with diameter $\overline{O R}$.

Claim. MTE are collinear.
Proof. $\measuredangle N M T=\measuredangle T Q N=\measuredangle L O N=\measuredangle N O E=\measuredangle N M E$.
Now consider the homothety mapping $\triangle W A B$ to $\triangle Q C D$. It should map E to a point on line $M E$ which is also on the line through Q perpendicular to $\overline{A B}$; that is, to point T. Hence $T C D$ are collinear, and it's immediate that T is the desired tangency point.

