IMO 1999/5 Evan Chen

TWITCH SOLVES ISL

Episode 88

Problem

Two circles Ω_1 and Ω_2 touch internally the circle Ω in M and N and the center of Ω_2 is on Ω_1 . The common chord of the circles Ω_1 and Ω_2 intersects Ω in A and B Lines MA and MB intersects Ω_1 in C and D. Prove that Ω_2 is tangent to CD.

Video

https://youtu.be/V-9UBJr7aDI

Solution

Let P and Q be the centers of Ω_1 and Ω_2 .

Let line MQ meet Ω_1 again at W, the homothetic image of Q under $\Omega_1 \to \Omega$.

Meanwhile, let T be the intersection of segment PQ with Ω_2 , and let L be its homothetic image on Ω . Since $\overline{PTQ} \perp \overline{AB}$, it follows \overline{LW} is a diameter of Ω . Let O be its center.

Claim. MNTQ is cyclic.

Proof. By Reim: $\angle TQM = \angle LWM = \angle LNM = \angle TNM$.

Let *E* be the midpoint of \overline{AB} .

Claim. *OEMN* is cyclic.

Proof. By radical axis, the lines MM, NN, AEB meet at a point R. Then OEMN is on the circle with diameter \overline{OR} .

Claim. MTE are collinear.

Proof.
$$\angle NMT = \angle TQN = \angle LON = \angle NOE = \angle NME$$
.

Now consider the homothety mapping $\triangle WAB$ to $\triangle QCD$. It should map E to a point on line ME which is also on the line through Q perpendicular to \overline{AB} ; that is, to point T. Hence TCD are collinear, and it's immediate that T is the desired tangency point.