Iberoamerican 2021/5

Evan Chen

Twitch Solves ISL

Episode 87

Problem

For a finite set C of integer numbers, we define $S(C)$ as the sum of the elements of C. Find two non-empty sets A and B whose intersection is empty, whose union is the set $\{1,2, \ldots, 2021\}$ and such that the product $S(A) S(B)$ is a perfect square.

Video

https://youtu.be/4bE3JbYn120

External Link

https://aops.com/community/p23437791

Solution

Use

$$
\begin{aligned}
B & =\{1,2,3, \ldots, 243,1778,1779, \ldots 2020\} \\
A & =\{\text { everything else }\} \\
S(B) & =9^{2} \cdot 6063=243 \cdot 2021 \\
S(A) & =16^{2} \cdot 6063=768 \cdot 2021
\end{aligned}
$$

Here we were motivated by the deep fact that

$$
S(A)+S(B)=1+2+\cdots+2021=1011 \cdot 2021
$$

with $337=9^{2}+16^{2}$ being the only $1 \bmod 4$ prime factor in the right hand side.
Remark. One can show that in fact $S(A)$ and $S(B)$ must be equal to $9^{2} \cdot 6063$ and $16^{2} \cdot 6063$ via Fermat's Christmas theorem.

