# Iberoamerican 2021/4 <br> Evan Chen 

## Twitch Solves ISL

Episode 87

## Problem

Let $a, b, c, x, y, z$ be real numbers such that

$$
\begin{aligned}
a^{2}+x^{2} & =b^{2}+y^{2}=c^{2}+z^{2}=(a+b)^{2}+(x+y)^{2} \\
& =(b+c)^{2}+(y+z)^{2}=(c+a)^{2}+(z+x)^{2}
\end{aligned}
$$

Show that $a^{2}+b^{2}+c^{2}=x^{2}+y^{2}+z^{2}$.

## Video

https://youtu.be/KDnDe6KaqL0

## External Link

https://aops.com/community/p23439842

## Solution

We present two solutions.

Low IQ solution. If the common sum is zero, then all numbers are zero. So WLOG the common quantity is 1 by scaling. Write

$$
\begin{aligned}
1 & =(a+b)^{2}+\left( \pm \sqrt{1-a^{2}} \pm \sqrt{1-b^{2}}\right)^{2} \\
& =a^{2}+2 a b+b^{2}+2-\left(a^{2}+b^{2}\right) \pm 2 \sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)} \\
\Longrightarrow 2 a b+1 & =2 \sqrt{\left(1-a^{2}\right)\left(1-b^{2}\right)} \\
\Longrightarrow 4 a^{2} b^{2}+4 a b+1 & =4\left(1-a^{2}\right)\left(1-b^{2}\right)=4-4 a^{2}-4 b^{2}+4(a b)^{2} \\
\Longrightarrow 4 a b & =4\left(1-a^{2}\right)\left(1-b^{2}\right)=3-4 a^{2}-4 b^{2} \\
\Longrightarrow a^{2}+a b+b^{2} & =\frac{3}{4} .
\end{aligned}
$$

Proceeding in the same way we get

$$
b^{2}+b c+c^{2}=\frac{3}{4}, \quad c^{2}+c a+a^{2}=\frac{3}{4} .
$$

By using HMMT 2014 Problem A-9, this implies $a b+b c+c a$ is equal to some absolute constant $k$ (not depending on the choice of solution to the system). Hence, adding gives

$$
a^{2}+b^{2}+c^{2}=\frac{9}{4}-\frac{1}{2} k .
$$

Similarly, $x^{2}+y^{2}+z^{2}=\frac{9}{4}-\frac{1}{2} k$, as needed.
Remark. This solution only uses the real hypothesis in the first step when scaling the common quantity to 1 . Thus, as long as $a^{2}+x^{2} \neq 0$, the problem still holds even in the complex setting.

On the other hand, the tuple $(1,1,1, i, i, i)$ is a counterexample to the statement without the real hypothesis.

High IQ solution. As before scale so that the common sum is 1. Consider

$$
z_{1}=a+x i, \quad z_{2}=b+y i, \quad z_{3}=c+z i
$$

in the complex plane. The problem hypothesis says that the vectors are on the unit circle such that $\left|z_{i}+z_{j}\right|=1$ for $i \neq j$, which implies they are the vertices of an equilateral triangle. Hence

$$
0=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}
$$

and the real part of the right-hand side is $\left(a^{2}+b^{2}+c^{2}\right)-\left(x^{2}+y^{2}+z^{2}\right)$.

