Iberoamerican 2021/4

Evan Chen

TWITCH SOLVES ISL

Episode 87

Problem

Let a, b, c, x, y, z be real numbers such that

$$a^{2} + x^{2} = b^{2} + y^{2} = c^{2} + z^{2} = (a+b)^{2} + (x+y)^{2}$$
$$= (b+c)^{2} + (y+z)^{2} = (c+a)^{2} + (z+x)^{2}$$

Show that $a^2 + b^2 + c^2 = x^2 + y^2 + z^2$.

Video

https://youtu.be/KDnDe6KaqL0

External Link

https://aops.com/community/p23439842

Solution

We present two solutions.

Low IQ solution. If the common sum is zero, then all numbers are zero. So WLOG the common quantity is 1 by scaling. Write

$$1 = (a+b)^{2} + \left(\pm\sqrt{1-a^{2}} \pm\sqrt{1-b^{2}}\right)^{2}$$

$$= a^{2} + 2ab + b^{2} + 2 - (a^{2} + b^{2}) \pm 2\sqrt{(1-a^{2})(1-b^{2})}$$

$$\implies 2ab + 1 = 2\sqrt{(1-a^{2})(1-b^{2})}$$

$$\implies 4a^{2}b^{2} + 4ab + 1 = 4(1-a^{2})(1-b^{2}) = 4 - 4a^{2} - 4b^{2} + 4(ab)^{2}$$

$$\implies 4ab = 4(1-a^{2})(1-b^{2}) = 3 - 4a^{2} - 4b^{2}$$

$$\implies a^{2} + ab + b^{2} = \frac{3}{4}.$$

Proceeding in the same way we get

$$b^2 + bc + c^2 = \frac{3}{4}$$
, $c^2 + ca + a^2 = \frac{3}{4}$.

By using HMMT 2014 Problem A-9, this implies ab + bc + ca is equal to some absolute constant k (not depending on the choice of solution to the system). Hence, adding gives

$$a^2 + b^2 + c^2 = \frac{9}{4} - \frac{1}{2}k.$$

Similarly, $x^2 + y^2 + z^2 = \frac{9}{4} - \frac{1}{2}k$, as needed.

Remark. This solution only uses the real hypothesis in the first step when scaling the common quantity to 1. Thus, as long as $a^2 + x^2 \neq 0$, the problem still holds even in the complex setting.

On the other hand, the tuple (1,1,1,i,i,i) is a counterexample to the statement without the real hypothesis.

High IQ solution. As before scale so that the common sum is 1. Consider

$$z_1 = a + xi,$$
 $z_2 = b + yi,$ $z_3 = c + zi$

in the complex plane. The problem hypothesis says that the vectors are on the unit circle such that $|z_i + z_j| = 1$ for $i \neq j$, which implies they are the vertices of an equilateral triangle. Hence

$$0 = z_1^2 + z_2^2 + z_3^2$$

and the real part of the right-hand side is $(a^2 + b^2 + c^2) - (x^2 + y^2 + z^2)$.