Iberoamerican 2021/3

Evan Chen

Twitch Solves ISL

Episode 87

Problem

Let $a_{1}, a_{2}, a_{3}, \ldots$ be a sequence of positive integers and let $b_{1}, b_{2}, b_{3}, \ldots$ be the sequence of real numbers given by

$$
b_{n}=\frac{a_{1} a_{2} \cdots a_{n}}{a_{1}+a_{2}+\cdots+a_{n}}, \text { for } n \geq 1
$$

Show that, if there exists at least one term among every million consecutive terms of the sequence $b_{1}, b_{2}, b_{3}, \ldots$ that is an integer, then there exists some k such that $b_{k}>2021^{2021}$.

Video

https://youtu.be/uePJQ1ZHhNs

External Link

https://aops.com/community/p23437536

Solution

Let $K=10^{10^{100}}$ be a huge absolute constant. We consider two cases. The first case is captured in the following claim.

Claim. Suppose that after the first K terms, at least one of every K terms a_{i} is greater than 1. Then b_{i} is unbounded.

Proof. In that case, consider the first n terms for some large n. Let $M=\max \left(a_{1}, \ldots, a_{n}\right)$. We have that

$$
b_{n} \geq \frac{2^{\left\lfloor 10^{-6} n-1\right\rfloor} M}{M+M+\cdots+M} \geq \frac{1}{n} 2^{\left\lfloor 10^{-6} n-1\right\rfloor}
$$

since the product of every million terms is at least 2 and one of the products is actually equal to M. The right-hand side is unbounded in n, as desired.

Thus, we may focus on the case where $a_{N}=a_{N+1}=\cdots=a_{N+K-1}=1$ for some $N \geq K$. Look at two indices b_{N+i} and b_{N+j} with $|j-i| \leq 10^{6}$ and such that b_{i} and b_{j} are integers, as promised by the problem condition. We may write

$$
b_{i}=\frac{X}{Y+i}, \quad b_{j}=\frac{X}{Y+j}
$$

where $Y=a_{1}+\cdots+a_{N} \geq N \geq K$. Then

$$
X \geq \operatorname{lcm}(Y+i, Y+j)=\frac{(Y+i)(Y+j)}{\operatorname{gcd}(Y+i, Y+j)} \geq \frac{1}{10^{6}}(Y+i)(Y+j)
$$

which means that

$$
b_{j} \geq \frac{Y+j}{10^{6}}>\frac{K}{10^{6}}
$$

as needed.

