Iberoamerican 2021/2

Evan Chen

Twitch Solves ISL

Episode 87

Problem

Consider an acute-angled triangle $A B C$, with $A C>A B$, and let Γ be its circumcircle. Let E and F be the midpoints of the sides $A C$ and $A B$, respectively. The circumcircle of the triangle $C E F$ and Γ meet at X and C, with $X \neq C$. The line $B X$ and the tangent to Γ through A meet at Y. Let P be the point on segment $A B$ so that $Y P=Y A$, with $P \neq A$, and let Q be the point where $A B$ and the parallel to $B C$ through Y meet each other. Show that F is the midpoint of $P Q$.

Video

https://youtu.be/vdvTg5tLx4I

External Link

https://aops.com/community/p23437637

Solution

Let $T=\overline{A A} \cap \overline{B C}$.

Claim (Main claim).

$$
\frac{A X}{B X}=\frac{A T}{A B} .
$$

Proof. Let A^{\prime} denote the point such that $A B C A^{\prime}$ is an isosceles trapezoid with $A A^{\prime} \| B C$. Note that A^{\prime} lies on line $F X$, because $\measuredangle C X F=\measuredangle C E F=\measuredangle A E F=\measuredangle A C B$.

Now let Z be the harmonic conjugate of X with respect to $A B$. Projecting $A X B Z$ through A^{\prime} onto line $A B$ we find $\overline{A^{\prime} Z} \| \overline{A B}$.

Finally from $\triangle B A T \sim \triangle A^{\prime} A C$, we get

$$
\frac{A X}{X B}=\frac{A Z}{Z B}=\frac{B A^{\prime}}{A A^{\prime}}=\frac{A C}{A A^{\prime}}=\frac{A T}{A B} .
$$

Since

$$
\measuredangle A P Y=\measuredangle Y A P=\measuredangle Y A B=\measuredangle A C B=\measuredangle A X B=\measuredangle A X Y
$$

we get $Y X P A$ is cyclic and hence

$$
B P \cdot B A=B X \cdot B Y=B X \cdot \frac{A B \cdot A Y}{A X}
$$

with the last equality due to $\triangle B Y A \sim \triangle A Y X$. Meanwhile,

$$
A Q=\frac{A Y}{A T} \cdot A F=\frac{A Y}{A T} \cdot A B
$$

Combining with the main claim, we have $A Q=B P$ as needed.

