Iberoamerican 2021/2 Evan Chen

TWITCH SOLVES ISL

Episode 87

Problem

Consider an acute-angled triangle ABC, with AC > AB, and let Γ be its circumcircle. Let E and F be the midpoints of the sides AC and AB, respectively. The circumcircle of the triangle CEF and Γ meet at X and C, with $X \neq C$. The line BX and the tangent to Γ through A meet at Y. Let P be the point on segment AB so that YP = YA, with $P \neq A$, and let Q be the point where AB and the parallel to BC through Y meet each other. Show that F is the midpoint of PQ.

Video

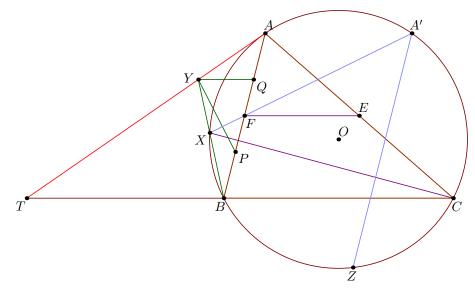
https://youtu.be/vdvTg5tLx4I

External Link

https://aops.com/community/p23437637

Solution

Let $T = \overline{AA} \cap \overline{BC}$.



Claim (Main claim).

$$\frac{AX}{BX} = \frac{AT}{AB}.$$

Proof. Let A' denote the point such that ABCA' is an isosceles trapezoid with $AA' \parallel BC$. Note that A' lies on line FX, because $\measuredangle CXF = \measuredangle CEF = \measuredangle AEF = \measuredangle ACB$.

Now let Z be the harmonic conjugate of X with respect to AB. Projecting AXBZ through A' onto line AB we find $\overline{A'Z} \parallel \overline{AB}$.

Finally from $\triangle BAT \sim \triangle A'AC$, we get

$$\frac{AX}{XB} = \frac{AZ}{ZB} = \frac{BA'}{AA'} = \frac{AC}{AA'} = \frac{AT}{AB}.$$

Since

$$\measuredangle APY = \measuredangle YAP = \measuredangle YAB = \measuredangle ACB = \measuredangle AXB = \measuredangle AXY$$

we get YXPA is cyclic and hence

$$BP \cdot BA = BX \cdot BY = BX \cdot \frac{AB \cdot AY}{AX}$$

with the last equality due to $\triangle BYA \sim \triangle AYX$. Meanwhile,

$$AQ = \frac{AY}{AT} \cdot AF = \frac{AY}{AT} \cdot AB.$$

Combining with the main claim, we have AQ = BP as needed.