China 2018/3

Evan Chen

Twitch Solves ISL
Episode 86

Problem

Let q be a positive integer which is not a perfect cube. Prove that there exists a positive constant C such that for all natural numbers n, one has

$$
\left\{n q^{\frac{1}{3}}\right\}+\left\{n q^{\frac{2}{3}}\right\} \geq C n^{-\frac{1}{2}}
$$

where $\{x\}$ denotes the fractional part of x.

Video

https://youtu.be/sCZM18JGDh0

External Link

https://aops.com/community/p9374386

Solution

Assume for contradiction there is a bad n. Define the integers

$$
\begin{aligned}
& A=n q^{1 / 3}-\delta \\
& B=n q^{2 / 3}-\varepsilon
\end{aligned}
$$

for small δ and ϵ in $\left(0, C n^{-1 / 2}\right)$. First, note that we have

$$
\begin{aligned}
\mathbb{Z} \ni A^{3}-n^{3} q & =-3 n^{2} q^{2 / 3} \delta+3 n q^{1 / 3} \delta^{2}-\delta^{3} \\
\mathbb{Z} \ni B^{3}-n^{3} q^{2} & =-3 n^{2} q^{4 / 3} \varepsilon+3 n q^{2 / 3} \varepsilon^{2}-\varepsilon^{3} \\
\mathbb{Z} \ni A B-n^{2} q & =-n q^{2 / 3} \delta-n q^{1 / 3} \varepsilon+\delta \varepsilon
\end{aligned}
$$

(For clarity, we highlighted in red terms which are bigger than $O(1)$.) Now we define two integers X and Y such that

$$
\begin{aligned}
X & =\left(A^{3}-n^{3} q\right)-3 n\left(A B-n^{2} q\right) \\
& =3 n q^{1 / 3} \delta^{2}-\delta^{3}+3 n^{2} q^{1 / 3} \varepsilon-3 n \delta \varepsilon \\
Y & =q X+\left(B^{3}-n^{3} q\right) \\
& =3 n q^{4 / 3} \delta^{2}-q \delta^{3}-3 n q \delta \varepsilon+3 n q^{2 / 3} \varepsilon^{2}-\varepsilon^{3} \\
& =3 n\left(q^{4 / 3} \delta^{2}-q \delta \varepsilon+q^{2 / 3} \varepsilon^{2}\right)-\varepsilon^{3}-q \delta^{3}
\end{aligned}
$$

Because δ and ε are $O\left(n^{-1 / 2}\right)$, it is evident that $Y<1$ for sufficiently large n. However, we contend $Y>0$ for sufficiently large n as well:

$$
\begin{aligned}
Y & =3 n\left(q^{4 / 3} \delta^{2}-q \delta \varepsilon+q^{2 / 3} \varepsilon^{2}\right)-\varepsilon^{3}-q \delta^{3} \\
& \quad \geq \frac{3}{2} n\left(q^{4 / 3} \delta^{2}+q^{2 / 3} \varepsilon^{2}\right)-\varepsilon^{3}-q \delta^{3} \\
& =\delta^{2}\left(\frac{3}{2} n q^{4 / 3}-q \delta\right)+\varepsilon^{2}\left(\frac{3}{2} n q^{2 / 3}-\varepsilon\right)
\end{aligned}
$$

which is positive for large n. Since Y was supposed to be an integer, $0<Y<1$ is a contradiction.

