MR U552

Evan Chen

Twitch Solves ISL

Episode 85

Problem

Find all polynomials with real coefficients P which satisfy

$$
\begin{aligned}
P(P(a+b))-2 a b(2 P(a+b)-a b) & \geq P\left(a^{2}\right)+P\left(b^{2}\right) \\
& \geq P\left(a^{2}+b^{2}\right)-P(a b \sqrt{2})
\end{aligned}
$$

for all $a, b \in \mathbb{R}$.

Video

https://youtu.be/i1atXI9YdxE

Solution

The answers are:

- $P(x)=c x^{2}$ for $-1 \leq c \leq 0 ;$
- $P(x)=x^{2}$;
- $P(x)=x^{2}+\ell$ for $\ell \geq 1$.

Claim. We have $\operatorname{deg} P \leq 2$.
Proof. Assume that deg $P>2$. Comparing the leading terms when $a=b$, we find that the leading coefficient of the dominating $P(P(a+b))$ is positive. However, plugging in $a=-b$ now gives a contradiction.

Claim. The x^{1} coefficient of P is zero and $P(0) \geq 0$.
Proof. Let $P(x)=c x^{2}+k x+\ell$. Expand the eastern inequality:

$$
c a^{4}+k a^{2}+\ell+c b^{4}+k b^{2}+\ell \geq c\left(a^{4}+b^{4}\right)+k\left(a^{2}+b^{2}\right)-k a b \sqrt{2} .
$$

Mass cancellation boils this down to

$$
2 \ell \geq-k a b \sqrt{2} .
$$

Since this is valid for all $a, b \in \mathbb{R}$, this means $k=0$ and $\ell \geq 0$.
Finally, put $P(x)=c x^{2}+\ell$ and the western inequality reads

$$
c^{3}(a+b)^{4}+2 \ell c^{2}(a+b)^{2}+\ell^{2} c+2 a^{2} b^{2} \geq c\left(a^{4}+b^{4}\right)+\ell+4 c \cdot a b(a+b)^{2}+4 a b \cdot \ell .
$$

We make some deductions:

- Let $b=0$ and $a \rightarrow \infty$ to get $c^{3} \geq c$.
- Let $a=-b=x$ gives

$$
P(P(0))+4 x^{2} P(0)+2 x^{4} \geq 2 P\left(x^{2}\right)
$$

which means $c \leq 1$.

- Combining these two, we get $c \in[-1,0] \cup\{1\}$.
- Let $a=b=0$ to get $\ell^{2} c \geq \ell$. Since $\ell \geq 0$ is known, either $\ell=0$ or $\ell c \geq 1$. The latter requires $c>0$, or $c=1$.

Hence, we obtain that either

$$
(c \in[-1,0] \cup\{1\} \text { and } \ell=0) \text { or }(c=1 \text { and } \ell \geq 1)
$$

which gives the answer set. One can manually check this works by plugging it in and bashing some more (details left to excessively bored reader).

