Shortlist 2020 N5
 Evan Chen

Twitch Solves ISL

Episode 83

Problem

Determine all functions $f: \mathbb{Z}_{>0} \rightarrow \mathbb{Z}_{\geq 0}$ satisfying the two conditions:

- $f(x y)=f(x)+f(y)$ for every positive integer x and y;
- there are infinitely many positive integers n such that $f(k)=f(n-k)$ for all $k<n$.

Video

https://youtu.be/3B15SRkbyJg

External Link

https://aops.com/community/p22698553

Solution

The following solution was given by Ankan Bhattacharya.
The answer is and $f(x) \equiv c \nu_{p}(x)$ for any prime p and constant $c \geq 0$. These obviously work.

For the other direction, let \mathcal{M} be the set of integers satisfying the second condition.
Claim. \mathcal{M} is closed under division.
Proof. Tautological.
Now assuming f is not identically zero, fix p the smallest prime for which $f(p)>0$.
Claim. This prime p divides any element of \mathcal{M} which is greater than p.
Proof. Suppose $m \in \mathcal{M}$ and $m>p$. Use division algorithm to get $m=p \cdot s+r$ where $0 \leq r<p$. If $r>0$, then

$$
f(r)=f(p \cdot s)=f(p)+f(s)>0
$$

a contradiction to minimality of p.
Claim. Every element of \mathcal{M} equals a power of p times an integer less than or equal to p.
Proof. Follows from the last two claims.
Assume for contradiction q is a prime greater than p and with $f(q)>0$. For some $p^{e} \in \mathcal{M}$ exceeding q, use the division algorithm to get

$$
p^{e}-q s=r<q
$$

and hence

$$
f(q)+f(s)=f(r), \quad r<q .
$$

But evidently $\nu_{p}(s)=\nu_{p}(r)$ and $\nu_{q}(r)=0$, hence $f(s)=f(r)$, contradiction.

