USAMO 1996/3 Evan Chen

TWITCH SOLVES ISL

Episode 81

Problem

Let ABC be a triangle. Prove that there is a line ℓ (in the plane of triangle ABC) such that the intersection of the interior of triangle ABC and the interior of its reflection A'B'C' in ℓ has area more than $\frac{2}{3}$ the area of triangle ABC.

Video

https://youtu.be/30XpnQ__wzs

External Link

https://aops.com/community/p353052

Solution

All that's needed is:

Claim. If *ABC* is a triangle where $\frac{1}{2} < \frac{AB}{AC} < 1$, then the $\angle A$ bisector works.

Proof. Let the $\angle A$ -bisector meet BC at D. The overlapped area is 2[ABD] and

$$\frac{[ABD]}{[ABC]} = \frac{BD}{BC} = \frac{AB}{AB + AC}$$

by angle bisector theorem.

In general, suppose x < y < z are sides of a triangle. Then $\frac{1}{2} < \frac{y}{z} < 1$ by triangle inequality as needed.

 $\mathbf{2}$