USAMO 1996/3

Evan Chen

Twitch Solves ISL

Episode 81

Problem

Let $A B C$ be a triangle. Prove that there is a line ℓ (in the plane of triangle $A B C$) such that the intersection of the interior of triangle $A B C$ and the interior of its reflection $A^{\prime} B^{\prime} C^{\prime}$ in ℓ has area more than $\frac{2}{3}$ the area of triangle $A B C$.

Video

https://youtu.be/30XpnQ__wzs

External Link

https://aops.com/community/p353052

Solution

All that's needed is:
Claim. If $A B C$ is a triangle where $\frac{1}{2}<\frac{A B}{A C}<1$, then the $\angle A$ bisector works.
Proof. Let the $\angle A$-bisector meet $B C$ at D. The overlapped area is $2[A B D]$ and

$$
\frac{[A B D]}{[A B C]}=\frac{B D}{B C}=\frac{A B}{A B+A C}
$$

by angle bisector theorem.
In general, suppose $x<y<z$ are sides of a triangle. Then $\frac{1}{2}<\frac{y}{z}<1$ by triangle inequality as needed.

