USAMO 1996/2

Evan Chen
Twitch Solves ISL

Episode 81

Problem

For any nonempty set S of real numbers, let $\sigma(S)$ denote the sum of the elements of S. Given a set A of n positive integers, consider the collection of all distinct sums $\sigma(S)$ as S ranges over the nonempty subsets of A. Prove that this collection of sums can be partitioned into n classes so that in each class, the ratio of the largest sum to the smallest sum does not exceed 2 .

Video

https://youtu.be/CkPmHY8MIYg

External Link

https://aops.com/community/p353051

Solution

By induction on n with $n=1$ being easy.
For the inductive step, assume

$$
A=\left\{a_{1}>a_{2}>\cdots>a_{n}\right\} .
$$

Fix any index k with the property that

$$
a_{k}>\frac{\sigma(A)}{2^{k}}
$$

(which must exist since $\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^{k}}<1$). Then

- We make k classes for the sums between $\frac{\sigma(A)}{2^{k}}$ and $\sigma(A)$; this handles every set which has any element in $\left\{a_{1}, \ldots, a_{k}\right\}$.
- We make $n-k$ classes via induction hypothesis on $\left\{a_{k+1}, \ldots, a_{n}\right\}$.

This solves the problem.

