Korea 2021/2

Evan Chen

Twitch Solves ISL

Episode 81

Problem

The incenter and A-excenter of $\triangle A B C$ is I and O. The foot from A, I to $B C$ is D and E. The intersection of $A D$ and $E O$ is X. The circumcenter of $\triangle B X C$ is P. Show that the circumcircle of $\triangle B P C$ is tangent to the A-excircle if X is on the incircle of $\triangle A B C$.

Video

https://youtu.be/R7LQQU8NN9I

External Link

https://aops.com/community/p23632170

Solution

It's known that X coincides with the midpoints of $\overline{A D}$ and also lies on line $\overline{I F}$.

Claim. $(B X C)$ is tangent to the incircle and passes through the midpoint N of $\overline{E O}$.
Proof. Follows by 2002 G7.
Hence by homothety at X the line $\overline{X I F}$ passes through P.
Claim. $(B X N C)$ and the A-excircle are orthogonal.
Proof. It suffices to show $B X C N$ is fixed under inversion around the A-excircle. To this end, we prove that

$$
O N \cdot O X=O F^{2}
$$

Indeed, this follows from the similar isosceles triangles

$$
\triangle O N F \sim \triangle O F X \sim \triangle E I X .
$$

Hence it follows that inversion centered at P with radius $P B=P C$ will fix the A-excircle. Since $B C$ is tangent to the A-excircle at F, the inverse image of F is the desired tangency point.

