Shortlist 2020 G7
 Evan Chen

Twitch Solves ISL
Episode 80

Problem

Let P be a point on the circumcircle of acute triangle $A B C$. Let D, E, F be the reflections of P in the A-midline, B-midline, and C-midline. Let ω be the circumcircle of the triangle formed by the perpendicular bisectors of $A D, B E, C F$.

Show that the circumcircles of $\triangle A D P, \triangle B E P, \triangle C F P$, and ω share a common point.

Video

https://youtu.be/0kODbd66TdE

External Link

https://aops.com/community/p22698237

Solution

The following solution was given by Ankan Bhattacharya.
Call the formed triangle $X Y Z$. Also denote by O_{a}, O_{b}, O_{c} the centers of $P A D, P B E$, $P C F$. Let L_{a}, L_{b}, L_{c} be the altitude feet. Also, let ray $P H$ meet the nine-point circle again at Q. We contend that Q is the desired point.

Claim. $A Q L_{a} P D$ is cyclic, and so on.
Proof. $A D P L_{a}$ is cyclic because it is an isosceles trapezoid, while $A Q L_{a} P$ is cyclic by power of a point from H.

Claim. Q is the Miquel point of complete quadrilateral $X Y Z O_{a} O_{b} O_{c}$.
Proof. It is sufficient to show that Q lies on $\left(O_{a} O_{b} Z\right)$. This is an angle chase:

$$
\begin{aligned}
\measuredangle O_{b} Q O_{a} & =\measuredangle O_{b} Q P+\measuredangle P Q O_{a}=\left(90^{\circ}-\measuredangle P L_{b} Q\right)+\left(90^{\circ}-\measuredangle Q L_{a} P\right) \\
& =\measuredangle Q L_{b} P+\measuredangle P L_{a} Q=\measuredangle L_{a} P L_{b}+\measuredangle L_{b} Q L_{a} \\
& =\measuredangle L_{a} P L_{b}+2 \measuredangle A C B \\
\measuredangle O_{b} Z O_{a} & =\measuredangle(B E, A D)=\arg (A D)-\arg (B E) \\
& =\left(2 \arg (B C)-\arg \left(P L_{a}\right)\right)-\left(2 \arg (A C)-\arg \left(P L_{b}\right)\right) \\
& =2 \measuredangle A C B-\measuredangle L_{b} P L_{a}
\end{aligned}
$$

as needed.

