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Problem
Let P be a point on the circumcircle of acute triangle ABC. Let D,E, F be the reflections
of P in the A-midline, B-midline, and C-midline. Let ω be the circumcircle of the triangle
formed by the perpendicular bisectors of AD,BE,CF .

Show that the circumcircles of 4ADP , 4BEP , 4CFP , and ω share a common point.

Video
https://youtu.be/0kODbd66TdE

External Link
https://aops.com/community/p22698237
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https://www.youtube.com/watch?v=0kODbd66TdE&list=PLi6h8GM1FA6yHh4gDk_ZYezmncU1EJUmZ
https://aops.com/community/p22698237
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Solution
The following solution was given by Ankan Bhattacharya.

Call the formed triangle XY Z. Also denote by Oa, Ob, Oc the centers of PAD, PBE,
PCF . Let La, Lb, Lc be the altitude feet. Also, let ray PH meet the nine-point circle
again at Q. We contend that Q is the desired point.
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Claim. AQLaPD is cyclic, and so on.

Proof. ADPLa is cyclic because it is an isosceles trapezoid, while AQLaP is cyclic by
power of a point from H.

Claim. Q is the Miquel point of complete quadrilateral XY ZOaObOc.

Proof. It is sufficient to show that Q lies on (OaObZ). This is an angle chase:

]ObQOa = ]ObQP + ]PQOa = (90◦ − ]PLbQ) + (90◦ − ]QLaP )

= ]QLbP + ]PLaQ = ]LaPLb + ]LbQLa

= ]LaPLb + 2]ACB

]ObZOa = ](BE,AD) = arg(AD)− arg(BE)

= (2 arg(BC)− arg(PLa))− (2 arg(AC)− arg(PLb))

= 2]ACB − ]LbPLa

as needed.
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