Shortlist 2020 G7 Evan Chen

TWITCH SOLVES ISL

Episode 80

Problem

Let P be a point on the circumcircle of acute triangle ABC. Let D, E, F be the reflections of P in the A-midline, B-midline, and C-midline. Let ω be the circumcircle of the triangle formed by the perpendicular bisectors of AD, BE, CF.

Show that the circumcircles of $\triangle ADP$, $\triangle BEP$, $\triangle CFP$, and ω share a common point.

Video

https://youtu.be/0k0Dbd66TdE

External Link

https://aops.com/community/p22698237

Solution

The following solution was given by Ankan Bhattacharya.

Call the formed triangle XYZ. Also denote by O_a , O_b , O_c the centers of PAD, PBE, PCF. Let L_a , L_b , L_c be the altitude feet. Also, let ray PH meet the nine-point circle again at Q. We contend that Q is the desired point.

Claim. AQL_aPD is cyclic, and so on.

Proof. $ADPL_a$ is cyclic because it is an isosceles trapezoid, while AQL_aP is cyclic by power of a point from H.

Claim. Q is the Miquel point of complete quadrilateral $XYZO_aO_bO_c$.

Proof. It is sufficient to show that Q lies on $(O_a O_b Z)$. This is an angle chase:

$$\begin{split} \measuredangle O_b Q O_a &= \measuredangle O_b Q P + \measuredangle P Q O_a = (90^\circ - \measuredangle P L_b Q) + (90^\circ - \measuredangle Q L_a P) \\ &= \measuredangle Q L_b P + \measuredangle P L_a Q = \measuredangle L_a P L_b + \measuredangle L_b Q L_a \\ &= \measuredangle L_a P L_b + 2\measuredangle A C B \\ \measuredangle O_b Z O_a &= \measuredangle (BE, AD) = \arg(AD) - \arg(BE) \\ &= (2\arg(BC) - \arg(PL_a)) - (2\arg(AC) - \arg(PL_b)) \\ &= 2\measuredangle A C B - \measuredangle L_b P L_a \end{split}$$

as needed.