IMO 2021/4

Evan Chen

Twitch Solves ISL
Episode 78

Problem

Let Γ be a circle with center I, and $A B C D$ a convex quadrilateral such that each of the segments $A B, B C, C D$ and $D A$ is tangent to Γ. Let Ω be the circumcircle of the triangle $A I C$. The extension of $B A$ beyond A meets Ω at X, and the extension of $B C$ beyond C meets Ω at Z. The extensions of $A D$ and $C D$ beyond D meet Ω at Y and T, respectively. Prove that

$$
A D+D T+T X+X A=C D+D Y+Y Z+Z C .
$$

Video

https://youtu.be/MeXMi9NG2Rc

External Link

https://aops.com/community/p22698001

Solution

Let $P Q R S$ be the contact points of Γ an $\overline{A B}, \overline{B C}, \overline{C D}, \overline{D A}$.

Claim. We have $\triangle I Q Z \cong \triangle I R T$. Similarly, $\triangle I P X \cong \triangle I S Y$.
Proof. By considering (CQIR) and (CITZ), there is a spiral similarity similarity mapping $\triangle I Q Z$ to $\triangle I R T$. Since $I Q=I R$, it is in fact a congruence.

This congruence essentially solves the problem. First, it implies:
Claim. $T X=Y Z$.
Proof. Because we saw $I X=I Y$ and $I T=I Z$.
Then, we can compute

$$
\begin{aligned}
A D+D T+X A & =A D+(R T-R D)+(X P-A P) \\
& =(A D-R D-A P)+R T+X P=R T+X P
\end{aligned}
$$

and

$$
\begin{aligned}
C D+D Y+Z C & =C D+(S Y-S D)+(Z Q-Q C) \\
& =(C D-S D-Q C)+S Y+Z Q=S Y+Z Q
\end{aligned}
$$

but $Z Q=R T$ and $X P=S Y$, as needed.

