Shortlist 2013 C4

Evan Chen
Twitch Solves ISL
Episode 77

Problem

Let n be a positive integer, and let A be a subset of $\{1, \ldots, n\}$. An A-partition of n into k parts is a representation of n as a sum $n=a_{1}+\cdots+a_{k}$, where the parts a_{1}, \ldots, a_{k} belong to A and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$. We say that an A-partition of n into k parts is optimal if there is no A-partition of n into r parts with $r<k$. Prove that any optimal A-partition of n contains at most $\sqrt[3]{6 n}$ different parts.

Video

https://youtu.be/wWVB29XWuU0

External Link

https://aops.com/community/p3543403

Solution

Suppose we have an optimal partition

$$
n=e_{1} \cdot a_{1}+\cdots+e_{m} \cdot a_{m} .
$$

In order for this to be optimal, it follows that for any subsets I and J of the index set $\{1, \ldots, m\}$ if $|I| \neq|J|$ then $\sum_{i \in I} a_{i} \neq \sum_{j \in J} a_{j}$. Otherwise, we could replace one sum with the other in our optimal partition and get one with fewer total parts.

This will be enough.
Claim. There are at least $k(m-k)+1$ possible values of $\sum_{i \in I} a_{i}$ across index sets $I \subseteq\{1, \ldots, m\}$ of cardinality k.

Proof. Sort $a_{1}<\cdots<a_{m}$. Start with

$$
\begin{aligned}
a_{1}+\cdots+a_{k} & <a_{1}+\cdots+a_{k-1}+a_{k+1} \\
& <a_{1}+\cdots+a_{k-1}+a_{k+2} \\
& <\cdots \\
& <a_{1}+\cdots+a_{k-1}+a_{n}
\end{aligned}
$$

which one can visualize as "moving a_{k} to a_{n} ". Then move a_{k-1} to a_{n-1}, and so on.
Vary k. The sums we get must all be different between layers, and bounded by n. So we have

$$
\begin{aligned}
n+1 & \geq \sum_{k=0}^{m}[k(m-k)+1] \\
& =m \cdot \frac{m(m+1)}{2}-\frac{m(m+1)(2 m+1)}{6}+m \\
& =\frac{m(m+1)}{2} \cdot \frac{m-1}{3}+m \\
& =\frac{m\left(m^{2}-1\right)}{6}+m \geq \frac{m^{3}}{6}+1
\end{aligned}
$$

so $m \leq \sqrt[3]{6 n}$.

