Shortlist 2013 C4 Evan Chen

TWITCH SOLVES ISL

Episode 77

Problem

Let *n* be a positive integer, and let *A* be a subset of $\{1, \ldots, n\}$. An *A*-partition of *n* into *k* parts is a representation of *n* as a sum $n = a_1 + \cdots + a_k$, where the parts a_1, \ldots, a_k belong to *A* and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\{a_1, a_2, \ldots, a_k\}$. We say that an *A*-partition of *n* into *k* parts is optimal if there is no *A*-partition of *n* into *r* parts with r < k. Prove that any optimal *A*-partition of *n* contains at most $\sqrt[3]{6n}$ different parts.

Video

https://youtu.be/wWVB29XWuU0

External Link

https://aops.com/community/p3543403

Solution

Suppose we have an optimal partition

$$n = e_1 \cdot a_1 + \dots + e_m \cdot a_m.$$

In order for this to be optimal, it follows that for any subsets I and J of the index set $\{1, \ldots, m\}$ if $|I| \neq |J|$ then $\sum_{i \in I} a_i \neq \sum_{j \in J} a_j$. Otherwise, we could replace one sum with the other in our optimal partition and get one with fewer total parts.

This will be enough.

Claim. There are at least k(m-k) + 1 possible values of $\sum_{i \in I} a_i$ across index sets $I \subseteq \{1, \ldots, m\}$ of cardinality k.

Proof. Sort $a_1 < \cdots < a_m$. Start with

$$a_{1} + \dots + a_{k} < a_{1} + \dots + a_{k-1} + a_{k+1}$$

$$< a_{1} + \dots + a_{k-1} + a_{k+2}$$

$$< \dots$$

$$< a_{1} + \dots + a_{k-1} + a_{n}$$

which one can visualize as "moving a_k to a_n ". Then move a_{k-1} to a_{n-1} , and so on. \Box

Vary k. The sums we get must all be different between layers, and bounded by n. So we have

$$\begin{split} n+1 &\geq \sum_{k=0}^{m} [k(m-k)+1] \\ &= m \cdot \frac{m(m+1)}{2} - \frac{m(m+1)(2m+1)}{6} + m \\ &= \frac{m(m+1)}{2} \cdot \frac{m-1}{3} + m \\ &= \frac{m(m^2-1)}{6} + m \geq \frac{m^3}{6} + 1 \end{split}$$

so $m \leq \sqrt[3]{6n}$.