Shortlist 2007 N1 Evan Chen

TWITCH SOLVES ISL

Episode 77

Problem

Find all pairs of positive integers (a, b) such that $7^a - 3^b$ divides $a^4 + b^2$.

Video

https://youtu.be/MjxGLjTWZdM

External Link

https://aops.com/community/p1106459

Solution

The only answer is (a, b) = (2, 4), which works as $7^2 - 3^4 = -32$ divides $2^4 + 4^2 = 32$. To show this is the only solution, we note the following:

- The left-hand side is always even, which implies a and b have the same parity.
- This in turn implies the left-hand side is 0 mod 4.
- Hence $a^4 + b^2 \equiv 0 \pmod{4}$ which means a and b are even.
- This means that $7^a 3^b \equiv 0 \pmod{8}$, which further means $b \equiv 0 \pmod{4}$.

This means we may let a = 2x and b = 2y with y even to obtain

 $(7^{x} - 3^{y})(7^{x} + 3^{y}) \mid (2x)^{4} + (2y)^{2}.$

To reduce to finite casework we contend:

Claim. $2 \cdot 3^a > 16a^4 + 4a^2$ once $a \ge 10$.

Proof.
$$3^{10} = 243^2 = 2 \cdot 59049 = 177147 > 160400.$$

Hence we are done if $\max(x, y) \ge 10$. Next

Claim. $7^x > 16x^4 + 4 \cdot 10^2$ for $x \ge 6$

Proof. $7^6 = 343^2 > 100000 > 16 \cdot 6^4 + 400.$

So we may assume $x \leq 5$ as well.

This gives us the following cases. In all situations, note that $(2 \cdot 5)^4 + (2 \cdot 10)^2 = 10400$ and consequently if $(7^x - 3^y)(7^x + 3^y) > 10400$ there is nothing to verify. These cases are marked as "big" in the table.

		7	49	343	2401	16807
		x = 1	x = 2	x = 3	x = 4	x = 5
9	y = 2	OK	$40\cdot 58 \nmid 272$	big	big	big
81	y = 4	$74 \cdot 88 \nmid 48$	$32\cdot130 \nmid 320$	big	big	big
729	y = 6	big	big	big	big	big
6561	y = 8	big	big	big	big	big