Shortlist 2007 N1
 Evan Chen
 Twitch Solves ISL
 Episode 77

Problem

Find all pairs of positive integers (a, b) such that $7^{a}-3^{b}$ divides $a^{4}+b^{2}$.

Video

https://youtu.be/MjxGLjTWZdM

External Link

https://aops.com/community/p1106459

Solution

The only answer is $(a, b)=(2,4)$, which works as $7^{2}-3^{4}=-32$ divides $2^{4}+4^{2}=32$.
To show this is the only solution, we note the following:

- The left-hand side is always even, which implies a and b have the same parity.
- This in turn implies the left-hand side is $0 \bmod 4$.
- Hence $a^{4}+b^{2} \equiv 0(\bmod 4)$ which means a and b are even.
- This means that $7^{a}-3^{b} \equiv 0(\bmod 8)$, which further means $b \equiv 0(\bmod 4)$.

This means we may let $a=2 x$ and $b=2 y$ with y even to obtain

$$
\left(7^{x}-3^{y}\right)\left(7^{x}+3^{y}\right) \mid(2 x)^{4}+(2 y)^{2} .
$$

To reduce to finite casework we contend:
Claim. $2 \cdot 3^{a}>16 a^{4}+4 a^{2}$ once $a \geq 10$.
Proof. $3^{10}=243^{2}=2 \cdot 59049=177147>160400$.
Hence we are done if $\max (x, y) \geq 10$. Next
Claim. $7^{x}>16 x^{4}+4 \cdot 10^{2}$ for $x \geq 6$
Proof. $7^{6}=343^{2}>100000>16 \cdot 6^{4}+400$.
So we may assume $x \leq 5$ as well.
This gives us the following cases. In all situations, note that $(2 \cdot 5)^{4}+(2 \cdot 10)^{2}=10400$ and consequently if $\left(7^{x}-3^{y}\right)\left(7^{x}+3^{y}\right)>10400$ there is nothing to verify. These cases are marked as "big" in the table.

			7	49	343	2401
16807						
		$x=1$	$x=2$	$x=3$	$x=4$	$x=5$
9	$y=2$	OK	$40 \cdot 58 \nmid 272$	big	big	big
81	$y=4$	$74 \cdot 88 \nmid 48$	$32 \cdot 130 \nmid 320$	big	big	big
729	$y=6$	big	big	big	big	big
6561	$y=8$	big	big	big	big	big

