Shortlist 1999 C6
 Evan Chen

Twitch Solves ISL
Episode 77

Problem

Suppose that every integer has been given one of the colours red, blue, green or yellow. Let x and y be odd integers so that $|x| \neq|y|$. Show that there are two integers of the same colour whose difference has one of the following values: $x, y, x+y$ or $x-y$.

Video

https://youtu.be/iznvJAYuUqo

External Link

https://aops.com/community/p131878

Solution

Assume for contradiction a coloring

$$
\chi: \mathbb{Z} \rightarrow S:=\{\text { red, green, blue, yellow }\}
$$

existed violating the conclusion. Then, we construct a coloring of $\widehat{\chi}: \mathbb{Z}^{2} \rightarrow S$ by

$$
\widehat{\chi}(a, b)=\chi(x \cdot a+y \cdot b) .
$$

Claim. $\hat{\chi}$ assigns different colors to $(a, b),(a, b+1),(a+1, b),(a+1, b+1)$.
Proof. By definition.
However colorings $\widehat{\chi}: \mathbb{Z}^{2} \rightarrow S$ satisfying the claim are actually straightforward to describe completely. Once such a description is given, one can directly check it can't be the lift of a χ as described.

