Shortlist 1999 C6

Evan Chen

TWITCH SOLVES ISL

Episode 77

Problem

Suppose that every integer has been given one of the colours red, blue, green or yellow. Let x and y be odd integers so that $|x| \neq |y|$. Show that there are two integers of the same colour whose difference has one of the following values: x, y, x + y or x - y.

Video

https://youtu.be/iznvJAYuUqo

External Link

https://aops.com/community/p131878

Solution

Assume for contradiction a coloring

$$\chi \colon \mathbb{Z} \to S \coloneqq \{\text{red}, \text{green}, \text{blue}, \text{yellow}\}\$$

existed violating the conclusion. Then, we construct a coloring of $\widehat{\chi} \colon \mathbb{Z}^2 \to S$ by

$$\widehat{\chi}(a,b) = \chi(x \cdot a + y \cdot b).$$

Claim. $\widehat{\chi}$ assigns different colors to (a,b), (a,b+1), (a+1,b), (a+1,b+1).

Proof. By definition.
$$\Box$$

However colorings $\widehat{\chi} \colon \mathbb{Z}^2 \to S$ satisfying the claim are actually straightforward to describe completely. Once such a description is given, one can directly check it can't be the lift of a χ as described.