USAMO 1997/3

Evan Chen

TWITCH SOLVES ISL

Episode 74

Problem

Prove that for any integer n, there exists a unique polynomial Q with coefficients in $\{0,1,\ldots,9\}$ such that Q(-2)=Q(-5)=n.

Video

https://youtu.be/rGoMTlJwq-I

External Link

https://aops.com/community/p343873

Solution

If we let

$$Q(x) = \sum_{k>0} a_k x^k$$

then a_k is uniquely determined by $n \pmod{2^k}$ and $n \pmod{5^k}$. Indeed, we can extract the coefficients of Q exactly by the following algorithm:

- Define $b_0 = c_0 = n$.
- For $i \geq 0$, let a_i be the unique digit satisfying $a_i \equiv b_i \pmod{2}$, $a_i \equiv c_i \pmod{5}$. Then, define

$$b_{i+1} = \frac{b_i - a_i}{-2}, \qquad c_{i+1} = \frac{c_i - a_i}{-5}.$$

The proof is automatic by Chinese remainder theorem, so this shows uniqueness already. The tricky part is to show that all a_i are eventually zero (i.e. the "existence" step is nontrivial because a polynomial may only have finitely many nonzero terms).

In fact, we will prove the following claim:

Claim. Suppose b_0 and c_0 are any integers such that

$$b_0 \equiv c_0 \pmod{3}$$
.

Then defining b_i and c_i as above, we have $b_i \equiv c_i \pmod{3}$ for all i, and $b_N = c_N = 0$ for large enough N.

Proof. Dropping the subscripts for ease of notation, we are looking at the map

$$(b,c)\mapsto \left(\frac{b-a}{-2},\frac{c-a}{-5}\right)$$

for some $0 \le a \le 9$ (a function in b and c).

The $b \equiv c \pmod{3}$ is clearly preserved. Also, examining the size,

- If |c| > 2, we have $\left| \frac{c-a}{-5} \right| \le \frac{|c|+9}{5} < |c|$. Thus, we eventually reach a pair with $|c| \le 2$.
- Similarly, if |b| > 9, we have $\left| \frac{b-a}{-2} \right| \le \frac{|b|+9}{2} < |b|$, so we eventually reach a pair with |b| < 9.

this leaves us with $5 \cdot 19 = 95$ ordered pairs to check (though only about one third have $b \equiv c \pmod{3}$). This can be done by the following code:

```
import functools
gfunctools.lru_cache()
def f(x0, y0):
    if x0 == 0 and y0 == 0:
        return 0
    if x0 % 2 == (y0 % 5) % 2:
        d = y0 % 5
    else:
        d = (y0 % 5) + 5

x1 = (x0 - d) // (-2)
y1 = (y0 - d) // (-5)
```

```
13
14    return 1 + f(x1, y1)
15
16    for x in range(-9, 10):
17    for y in range(-2, 3):
18         if (x % 3 == y % 3):
19         print(f"({x:2d}, {y:2d}) finished in {f(x,y)} moves")
```

As this gives the output

```
(-9, 0) finished in 5 moves
  (-8, -2) finished in 5 moves
2
  (-8, 1) finished in 5 moves
3
  (-7, -1) finished in 5 moves
  (-7, 2) finished in 5 moves
6
  (-6, 0) finished in 3 moves
  (-5, -2) finished in 3 moves
  (-5, 1) finished in 3 moves
8
  (-4, -1) finished in 3 moves
       2) finished in 3 moves
  (-4.
10
11 (-3, 0) finished in 3 moves
12 (-2, -2) finished in 3 moves
13 (-2, 1) finished in 3 moves
  (-1, -1) finished in 3 moves
14
  (-1, 2) finished in 3 moves
15
  ( 0, 0) finished in 0 moves
16
  ( 1, -2) finished in 2 moves
17
  (1, 1) finished in 1 moves
18
19 (2, -1) finished in 2 moves
20 (2, 2) finished in 1 moves
21 (3, 0) finished in 2 moves
22 ( 4, -2) finished in 2 moves
23 (4,
       1) finished in 2 moves
  (5, -1) finished in 2 moves
24
       2) finished in 2 moves
25
  (5,
  ( 6, 0) finished in 4 moves
26
27 (7, -2) finished in 4 moves
  (7, 1) finished in 4 moves
  (8, -1) finished in 4 moves
29
30 ( 8, 2) finished in 4 moves
  (9,
        0) finished in 4 moves
```

we are done. \Box