USAMO 1997/3

Evan Chen

Twitch Solves ISL

Episode 74

Problem

Prove that for any integer n, there exists a unique polynomial Q with coefficients in $\{0,1, \ldots, 9\}$ such that $Q(-2)=Q(-5)=n$.

Video

https://youtu.be/rGoMTlJwq-I

External Link

https://aops.com/community/p343873

Solution

If we let

$$
Q(x)=\sum_{k \geq 0} a_{k} x^{k}
$$

then a_{k} is uniquely determined by $n\left(\bmod 2^{k}\right)$ and $n\left(\bmod 5^{k}\right)$. Indeed, we can extract the coefficients of Q exactly by the following algorithm:

- Define $b_{0}=c_{0}=n$.
- For $i \geq 0$, let a_{i} be the unique digit satisfying $a_{i} \equiv b_{i}(\bmod 2), a_{i} \equiv c_{i}(\bmod 5)$. Then, define

$$
b_{i+1}=\frac{b_{i}-a_{i}}{-2}, \quad c_{i+1}=\frac{c_{i}-a_{i}}{-5} .
$$

The proof is automatic by Chinese remainder theorem, so this shows uniqueness already. The tricky part is to show that all a_{i} are eventually zero (i.e. the "existence" step is nontrivial because a polynomial may only have finitely many nonzero terms).

In fact, we will prove the following claim:
Claim. Suppose b_{0} and c_{0} are any integers such that

$$
b_{0} \equiv c_{0} \quad(\bmod 3) .
$$

Then defining b_{i} and c_{i} as above, we have $b_{i} \equiv c_{i}(\bmod 3)$ for all i, and $b_{N}=c_{N}=0$ for large enough N.

Proof. Dropping the subscripts for ease of notation, we are looking at the map

$$
(b, c) \mapsto\left(\frac{b-a}{-2}, \frac{c-a}{-5}\right)
$$

for some $0 \leq a \leq 9$ (a function in b and c).
The $b \equiv c(\bmod 3)$ is clearly preserved. Also, examining the size,

- If $|c|>2$, we have $\left|\frac{c-a}{-5}\right| \leq \frac{|c|+9}{5}<|c|$. Thus, we eventually reach a pair with $|c| \leq 2$.
- Similarly, if $|b|>9$, we have $\left|\frac{b-a}{-2}\right| \leq \frac{|b|+9}{2}<|b|$, so we eventually reach a pair with $|b| \leq 9$.
this leaves us with $5 \cdot 19=95$ ordered pairs to check (though only about one third have $b \equiv c(\bmod 3))$. This can be done by the following code:

```
import functools
@functools.lru_cache()
def f(x0, y0):
    if x0 == 0 and y0 == 0:
        return 0
    if x0 % 2 == (y0 % 5) % 2:
        d = y0 % 5
    else:
        d = (y0 % 5) + 5
    x1 = (x0 - d) // (-2)
    y1 = (y0 - d) // (-5)
```

```
13}14 return 1 + f(x1, y1)
for x in range(-9, 10):
for y in range(-2, 3):
    if (x % 3 == y % 3):
        print(f"({x:2d}, {y:2d}) finished in {f(x,y)} moves")
```

As this gives the output

```
(-9, 0) finished in 5 moves
(-8, -2) finished in 5 moves
(-8, 1) finished in 5 moves
(-7, -1) finished in 5 moves
(-7, 2) finished in 5 moves
(-6, 0) finished in 3 moves
(-5, -2) finished in 3 moves
(-5, 1) finished in 3 moves
(-4, -1) finished in 3 moves
(-4, 2) finished in 3 moves
(-3, 0) finished in 3 moves
(-2, -2) finished in 3 moves
(-2, 1) finished in 3 moves
(-1, -1) finished in 3 moves
(-1, 2) finished in 3 moves
( 0, 0) finished in O moves
( 1, -2) finished in 2 moves
( 1, 1) finished in 1 moves
( 2, -1) finished in 2 moves
( 2, 2) finished in 1 moves
( 3, 0) finished in 2 moves
( 4, -2) finished in 2 moves
(4, 1) finished in 2 moves
( 5, -1) finished in 2 moves
( 5, 2) finished in 2 moves
( 6, 0) finished in 4 moves
( 7, -2) finished in 4 moves
( 7, 1) finished in 4 moves
( 8, -1) finished in 4 moves
( 8, 2) finished in 4 moves
( 9, 0) finished in 4 moves
```

we are done.

