Sweden 2018
 Evan Chen
 Twitch Solves ISL
 Episode 72

Problem

For which positive integers n is the polynomial

$$
p(x)=1+x^{n}+x^{2 n}
$$

reducible over the integers?

Video

https://youtu.be/drrHDLWR6bw

Solution

The answer is only n a power of 3 (including 1). Indeed, letting Φ_{\bullet} denote the cyclotomic polynomial, we have the decomposition of p into irreducibles is exactly given by

$$
p(x)=\frac{x^{3 n}-1}{x^{n}-1}=\frac{\prod_{d \mid 3 n} \Phi_{d}(n)}{\prod_{d \mid n} \Phi_{d}(n)}=\prod_{\substack{d \mid 3 n \\ d \nmid n}} \Phi_{d}(n) .
$$

Hence the answer is those n for which there is only one d satisfying $d \mid 3 n, d \nmid n$. This is exactly the powers of 3 .

