Shortlist 2012 N3

Evan Chen

Twitch Solves ISL

Episode 70

Problem

Determine all integers $m \geq 2$ such that every n with $\frac{m}{3} \leq n \leq \frac{m}{2}$ divides the binomial coefficient $\binom{n}{m-2 n}$.

Video

https://youtu.be/zVmGnDNw6LE

External Link

https://aops.com/community/p3156840

Solution

The answer is m prime. The canonical way to think of this is:
Claim. The number m works if and only if $\operatorname{gcd}(n, m)=1$ for all $n \in[m / 3, m / 2]$.
Proof. Fix m, and choose any prime p. The divisibility is rewritten as

$$
\nu_{p}((n-1)!) \geq \nu_{p}((m-2 n)!)+\left(\nu_{p}(2 n)!\right)
$$

Define

$$
f(n, q)=\left\lfloor\frac{n-1}{q}\right\rfloor-\left\lfloor\frac{m-2 n}{q}\right\rfloor-\left\lfloor\frac{3 n-m-1}{q}\right\rfloor .
$$

Then we have

$$
\nu_{p}\left(\binom{n}{m-2 n}\right)=\sum_{e \geq 1} f\left(n, p^{e}\right)
$$

We want this sum to be nonnegative for any prime p.
The following properties are true:

- $f(n, q) \geq 0$ if $q \nmid n$, since then $\left\lfloor\frac{n-1}{q}\right\rfloor=\left\lfloor\frac{n}{q}\right\rfloor$. So there are no issues when $p \nmid n$.
- Now suppose q is a prime power of a prime p dividing n. We may explicitly compute

$$
\begin{aligned}
f(q k, q) & =(k-1))-\left(\left\lfloor\frac{m-2(q k)}{q}\right\rfloor+\left\lfloor\frac{3(q k)-m-1}{q}\right\rfloor\right) \\
& =-1-\left\lfloor\frac{m}{q}\right\rfloor-\left\lfloor\frac{-(m+1)}{q}\right\rfloor \\
& = \begin{cases}-1 & q \mid m \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

In that case, it follows that $\left.\nu_{p}\binom{n}{m-2 n}\right)$ is the sum of some non-positive terms, at least one of which is -1 (namely the first term $f\left(n, p^{1}\right)=-1$.) So m fails.

In conclusion, m works if and only n never has a common prime factor with m, as desired.

