Shortlist 2012 N1
 Evan Chen

Twitch Solves ISL
Episode 68

Problem

Call admissible a set A of integers that has the following property: If $x, y \in A$ (possibly $x=y$) then $x^{2}+k x y+y^{2} \in A$ for every integer k. Determine all pairs m, n of nonzero integers such that the only admissible set containing both m and n is the set of all integers.

Video

https://youtu.be/yvQEumKoBXI

External Link

https://aops.com/community/p3160599

Solution

The answer is $\operatorname{gcd}(m, n)=1$.
If $\operatorname{gcd}(m, n)>1$, one can just let A be multiples of $\operatorname{gcd}(m, n)$.
On the other hand, suppose $\operatorname{gcd}(m, n)=1$. Let $P(x, y, k)$ be the statement. Then:

- $P(m, m, k)$ and $P(n, n, k)$ show all multiples of m^{2} and n^{2} are in A.
- $P\left(a m^{2}, b n^{2}, 2\right)$ gives

$$
a^{2} \cdot m^{4}+2 a b \cdot m^{2} n^{2}+b^{2} n^{4}=\left(a m^{2}+b n^{2}\right)^{2} \in A
$$

which shows every perfect square is in A. In particular $1 \in A$.

- Now $P(1,1, k)$ implies $A=\mathbb{Z}$.

