Shortlist 1998 N1

Evan Chen

TWITCH SOLVES ISL

Episode 68

Problem

Determine all pairs (x, y) of positive integers such that $x^2y + x + y$ is divisible by $xy^2 + y + 7$.

Video

https://youtu.be/iswj_GVcbo8

External Link

https://aops.com/community/p124428

Solution

The relation implies

$$xy^{2} + y + 7 \mid x^{2}y + x + y$$

 $xy^{2} + y + 7 \mid x^{2}y^{2} + xy + y^{2}$
 $xy^{2} + y + 7 \mid y^{2} - 7x$.

As $-7(xy^2 + y + 7) < y^2 - 7x < xy^2 + y + 7$, we should be all set. Indeed, we have an integer k such that:

$$y^{2} - 7x + k(xy^{2} + y + 7) = 0 \iff x = \frac{y^{2} + k(y + 7)}{7 - k \cdot y^{2}}.$$

The denominator is promised to be positive, so $k \leq 6$. Checking all the cases:

- $(x,y) = (7n^2,7n)$ for k = 0, for any n (this is just $y^2/7 = x$)
- (x,y) = (3/2,1) for k = 1, no good
- (x,y) = (13/3,2) for k = 1, no good
- (x,y) = (19/3,1) for k = 2, no good
- (x,y) = (25/4,1) for k = 3, no good
- (x,y) = (11,1) for k=4
- (x,y) = (41/2,1) for k = 5, no good
- (x,y) = (49,1) for k = 6.

Hence the answer $(7n^2, 7n)$, (11, 1) and (49, 1), easily seen to work.