Shortlist 1998 N1
 Evan Chen
 Twitch Solves ISL
 Episode 68

Problem

Determine all pairs (x, y) of positive integers such that $x^{2} y+x+y$ is divisible by $x y^{2}+y+7$.

Video

https://youtu.be/iswj_GVcbo8

External Link

https://aops.com/community/p124428

Solution

The relation implies

$$
\begin{aligned}
& x y^{2}+y+7 \mid x^{2} y+x+y \\
& x y^{2}+y+7 \mid x^{2} y^{2}+x y+y^{2} \\
& x y^{2}+y+7 \mid y^{2}-7 x .
\end{aligned}
$$

As $-7\left(x y^{2}+y+7\right)<y^{2}-7 x<x y^{2}+y+7$, we should be all set. Indeed, we have an integer k such that:

$$
y^{2}-7 x+k\left(x y^{2}+y+7\right)=0 \Longleftrightarrow x=\frac{y^{2}+k(y+7)}{7-k \cdot y^{2}}
$$

The denominator is promised to be positive, so $k \leq 6$. Checking all the cases:

- $(x, y)=\left(7 n^{2}, 7 n\right)$ for $k=0$, for any n (this is just $\left.y^{2} / 7=x\right)$
- $(x, y)=(3 / 2,1)$ for $k=1$, no good
- $(x, y)=(13 / 3,2)$ for $k=1$, no good
- $(x, y)=(19 / 3,1)$ for $k=2$, no good
- $(x, y)=(25 / 4,1)$ for $k=3$, no good
- $(x, y)=(11,1)$ for $k=4$
- $(x, y)=(41 / 2,1)$ for $k=5$, no good
- $(x, y)=(49,1)$ for $k=6$.

Hence the answer $\left(7 n^{2}, 7 n\right),(11,1)$ and $(49,1)$, easily seen to work.

