Vietnam 2014 Training Evan Chen

TWITCH SOLVES ISL

Episode 67

Problem

Let ABC be a triangle inscribed circle (O), orthocenter H. Points E, F lie on (O) such that $EF \parallel BC$. Point D is midpoint of HE. The line passing though O and parallel to AF cuts AB at G. Prove that $DG \perp DC$.

Video

https://youtu.be/FxemXWXw92s

Solution

We present two solutions.

Complex numbers approach We use straight complex numbers with a, b, c, e as variables and with chord UV being the diameter of O parallel to \overline{AF} , so $G = \overline{UV} \cap \overline{AB}$. Then

$$\begin{split} f &= \frac{bc}{e} \\ d &= \frac{a+b+c+e}{2} \\ g &= \frac{ab(u+v) - uv(a+b)}{ab - uv} = \frac{-af(a+b)}{ab - af} = \frac{f(a+b)}{f - b} \\ \frac{g-d}{c-d} &= \frac{\frac{f(a+b)}{f - b} - \frac{a+b+c+e}{2}}{c - \frac{a+b+c+e}{2}} \\ &= -\frac{\frac{c(a+b)}{c-e} - \frac{a+b+c+e}{2}}{\frac{a+b+e-c}{2}} = \frac{1}{c-e} \cdot \frac{2c(a+b) - (c-e)(a+b+c+e)}{a+b+e-c} \\ &= \frac{1}{c-e} \cdot \frac{(c+e)(a+b) - (c-e)(c+e)}{a+b+e-c} = \frac{c+e}{c-e}. \end{split}$$

Moving points approach Fix ABC and animate E on the circumcircle. Then G varies on line AB projectively via the map

$$(ABC) \to (ABC) \to \ell_{\infty} \to AB$$
$$E \mapsto F \mapsto \infty \mapsto G.$$

Also, D varies projectively on the nine-point circle.

Let $\infty_1 = \overline{DG} \cap \ell_{\infty}$ which has degree 2 + 1 = 3. On the other hand, $\infty_2 = \overline{CD} \cap \ell_{\infty}$ has degree 2 + 0 = 2. Hence, it suffices to verify the result for 3 + 2 + 1 = 6 points, in order for the rotation of ∞_1 by 90° to coincide with ∞_2 .

This can be done by letting D be the foot of the altitude and the midpoint of each of the three sides. (Proof should be written out in a contest, but here it is omitted.)