Vietnam 2014 Training
 Evan Chen

Twitch Solves ISL

Episode 67

Problem

Let $A B C$ be a triangle inscribed circle (O), orthocenter H. Points E, F lie on (O) such that $E F \| B C$. Point D is midpoint of $H E$. The line passing though O and parallel to $A F$ cuts $A B$ at G. Prove that $D G \perp D C$.

Video

https://youtu.be/FxemXWXw92s

Solution

We present two solutions.
Complex numbers approach. We use straight complex numbers with a, b, c, e as variables and with chord $U V$ being the diameter of O parallel to $\overline{A F}$, so $G=\overline{U V} \cap \overline{A B}$. Then

$$
\begin{aligned}
f & =\frac{b c}{e} \\
d & =\frac{a+b+c+e}{2} \\
g & =\frac{a b(u+v)-u v(a+b)}{a b-u v}=\frac{-a f(a+b)}{a b-a f}=\frac{f(a+b)}{f-b} \\
\frac{g-d}{c-d} & =\frac{\frac{f(a+b)}{f-b}-\frac{a+b+c+e}{2}}{c-\frac{a+b+c+e}{2}} \\
& =-\frac{\frac{c(a+b)}{c-e}-\frac{a+b+c+e}{2}}{\frac{a+b+e-c}{2}}=\frac{1}{c-e} \cdot \frac{2 c(a+b)-(c-e)(a+b+c+e)}{a+b+e-c} \\
& =\frac{1}{c-e} \cdot \frac{(c+e)(a+b)-(c-e)(c+e)}{a+b+e-c}=\frac{c+e}{c-e} .
\end{aligned}
$$

Moving points approach. Fix $A B C$ and animate E on the circumcircle. Then G varies on line $A B$ projectively via the map

$$
\begin{aligned}
(A B C) & \rightarrow(A B C) \rightarrow \ell_{\infty} \rightarrow A B \\
E & \mapsto F \mapsto \infty \mapsto G .
\end{aligned}
$$

Also, D varies projectively on the nine-point circle.

Let $\infty_{1}=\overline{D G} \cap \ell_{\infty}$ which has degree $2+1=3$. On the other hand, $\infty_{2}=\overline{C D} \cap \ell_{\infty}$ has degree $2+0=2$. Hence, it suffices to verify the result for $3+2+1=6$ points, in order for the rotation of ∞_{1} by 90° to coincide with ∞_{2}.

This can be done by letting D be the foot of the altitude and the midpoint of each of the three sides. (Proof should be written out in a contest, but here it is omitted.)

