Italy TST 2006/5

Evan Chen

Twitch Solves ISL

Episode 67

Problem

Let n be a positive integer, and let A_{n} be the set of all positive integers $a \leq n$ such that $n \mid a^{n}+1$.
(a) Find all n such that $A_{n} \neq \emptyset$.
(b) Find all n such that $\left|A_{n}\right|$ is even and non-zero.
(c) Is there n such that $\left|A_{n}\right|=130$?

Video

https://youtu.be/YBS-zrN1104

Solution

Part (a): The answer is odd n and even n with $\nu_{2}(n) \leq 1$ and only $1 \bmod 4$ prime factors.

- For odd n, let $a=n-1$ for a construction.
- For even n, the right-hand side is a sum of two squares, one of which is odd. So $\nu_{2}(n) \leq 1$ and the $1 \bmod 4$ condition are both needed. Conversely, we can choose n to be a square root of -1 modulo each prime power dividing n; this works.

Part (b): The answer is all even numbers in (a) other than $n=2$. As for evenness:

- When n is even, pairing a and $-a$ implies $\left|A_{n}\right|$ even, except $n=2$ (the only time $\left.n \mid(n / 2)^{n}+1\right)$.
- When n is odd, the number of solutions to $a^{n} \equiv-1\left(\bmod p^{e}\right)$ for odd prime power p^{e} is odd: $a \equiv-1$ is a solution, $a \equiv 1$ is not, and any other solutions come in pairs $\{a, 1 / a\}$.

Part (c): No. If such n existed, by (b) it is even.

- If n has more than one distinct odd prime factor, then $\left|A_{n}\right|$ is divisible by four, by Chinese remainder theorem.
- For $n=2 p^{e}$,

$$
a^{2 p^{e}} \equiv-1 \quad\left(\bmod p^{e}\right)
$$

We have a primitive root, of order $(p-1) \cdot p^{e-1}$. So there are $2 p^{e-1}$ solutions.
Neither case coincides with 130, end proof.

