USAMO 2021/6

Evan Chen

Twitch Solves ISL

Episode 65

Problem

Let $A B C D E F$ be a convex hexagon satisfying $\overline{A B}\|\overline{D E}, \overline{B C}\| \overline{E F}, \overline{C D} \| \overline{F A}$, and

$$
A B \cdot D E=B C \cdot E F=C D \cdot F A
$$

Let X, Y, and Z be the midpoints of $\overline{A D}, \overline{B E}$, and $\overline{C F}$. Prove that the circumcenter of $\triangle A C E$, the circumcenter of $\triangle B D F$, and the orthocenter of $\triangle X Y Z$ are collinear.

Video

https://youtu.be/9WNgDETHOII

External Link

https://aops.com/community/p21498548

Solution

We present two solutions.

Parallelogram solution found by contestants. Note that the following figure is intentionally not drawn to scale, to aid legibility. We construct parallelograms $A B C E^{\prime}$, etc as shown. Note that this gives two congruent triangles $A^{\prime} C^{\prime} E^{\prime}$ and $B^{\prime} D^{\prime} F^{\prime}$. (Assuming that triangle $X Y Z$ is non-degenerate, the triangles $A^{\prime} C^{\prime} E^{\prime}$ and $B^{\prime} D^{\prime} F^{\prime}$ will also be non-degenerate.)

Claim. If $A B \cdot D E=B C \cdot E F=C D \cdot F A=k$, then the circumcenters of $A C E$ and $A^{\prime} C^{\prime} E^{\prime}$ coincide.

Proof. The power of A to $\left(A^{\prime} C^{\prime} E^{\prime}\right)$ is $A E^{\prime} \cdot A C^{\prime}=B C \cdot E F=k$; same for C and E.

Claim. Triangle $X Y Z$ is the vector average of the (congruent) medial triangles of triangles $A^{\prime} C^{\prime} E^{\prime}$ and $B^{\prime} D^{\prime} F^{\prime}$.

Proof. If M and N are the midpoints of $\overline{C^{\prime} E^{\prime}}$ and $\overline{B^{\prime} F^{\prime}}$, then X is the midpoint of $\overline{M N}$ by vector calculation:

$$
\begin{aligned}
\frac{\vec{M}+\vec{N}}{2} & =\frac{\frac{\vec{C}^{\prime}+\vec{E}^{\prime}}{2}+\frac{\vec{B}^{\prime}+\vec{F}^{\prime}}{2}}{2} \\
& =\frac{\vec{C}^{\prime}+\vec{E}^{\prime}+\vec{B}^{\prime}+\vec{F}^{\prime}}{4} \\
& =\frac{(\vec{A}+\vec{E}-\vec{F})+(\vec{C}+\vec{A}-\vec{B})+(\vec{D}+\vec{F}-\vec{E})+(\vec{B}+\vec{D}-\vec{C})}{4} \\
& =\frac{\vec{A}+\vec{D}}{2}=\vec{X} .
\end{aligned}
$$

Hence the orthocenter of $X Y Z$ is the midpoint of the orthocenters of the medial triangles of $A^{\prime} C^{\prime} E^{\prime}$ and $B^{\prime} D^{\prime} F^{\prime}$ - that is, their circumcenters.

Author's solution. Call $M N P$ and $U V W$ the medial triangles of $A C E$ and $B D F$.

Claim. In trapezoid $A B D E$, the perpendicular bisector of $\overline{X Y}$ is the same as the perpendicular bisector of the midline $\overline{W N}$.
Proof. This is true for any trapezoid: because $W X=\frac{1}{2} A B=Y N$.
Claim. The points V, W, M, N are cyclic.
Proof. By power of a point from Y, since

$$
W Y \cdot Y N=\frac{1}{2} D E \cdot \frac{1}{2} A B=\frac{1}{2} E F \cdot \frac{1}{2} B C=V Y \cdot Y M .
$$

Applying all the cyclic variations of the above two claims, it follows that all six points U, V, W, M, N, P are concyclic, and the center of that circle coincides with the circumcenter of $\triangle X Y Z$.

Remark. It is also possible to implement ideas from the first solution here, by showing all six midpoints have equal power to $(X Y Z)$.

Claim. The orthocenter of $X Y Z$ is the midpoint of the circumcenters of $\triangle A C E$ and $\triangle B D F$.

Proof. Apply complex numbers with the unit circle coinciding with the circumcircle of NVPWMU. Then

$$
\begin{aligned}
\operatorname{orthocenter}(X Y Z) & =x+y+z=\frac{a+b+c+d+e+f}{2} \\
\operatorname{circumcenter}(A C E) & =\operatorname{orthocenter}(M N P) \\
& =m+n+p=\frac{c+e}{2}+\frac{e+a}{2}+\frac{a+c}{2}=a+c+e \\
\text { circumcenter }(B D F) & =\operatorname{orthocenter}(U V W) \\
& =u+v+w=\frac{d+f}{2}+\frac{f+b}{2}+\frac{b+d}{2}=b+d+f .
\end{aligned}
$$

