USAMO 2021/5 Evan Chen

TWITCH SOLVES ISL

Episode 65

Problem

Let $n \ge 4$ be an integer. Find all positive real solutions to the following system of 2n equations:

$$a_{1} = \frac{1}{a_{2n}} + \frac{1}{a_{2}}, \qquad a_{2} = a_{1} + a_{3},$$

$$a_{3} = \frac{1}{a_{2}} + \frac{1}{a_{4}}, \qquad a_{4} = a_{3} + a_{5},$$

$$a_{5} = \frac{1}{a_{4}} + \frac{1}{a_{6}}, \qquad a_{6} = a_{5} + a_{7},$$

$$\vdots \qquad \vdots$$

$$a_{2n-1} = \frac{1}{a_{2n-2}} + \frac{1}{a_{2n}}, \qquad a_{2n} = a_{2n-1} + a_{1}.$$

Video

https://youtu.be/9WNgDETHOll

External Link

https://aops.com/community/p21498967

Solution

The answer is that the only solution is (1, 2, 1, 2, ..., 1, 2) which works.

We will prove a_{2k} is a constant sequence, at which point the result is obvious.

First approach (Andrew Gu). Apparently, with indices modulo 2n, we should have

$$a_{2k} = \frac{1}{a_{2k-2}} + \frac{2}{a_{2k}} + \frac{1}{a_{2k+2}}$$

for every index k (this eliminates all a_{odd} 's). Define

$$m = \min_{k} a_{2k}$$
 and $M = \max_{k} a_{2k}$.

Look at the indices i and j achieving m and M to respectively get

$$m = \frac{2}{m} + \frac{1}{a_{2i-2}} + \frac{1}{a_{2i+2}} \ge \frac{2}{m} + \frac{1}{M} + \frac{1}{M} = \frac{2}{m} + \frac{2}{M}$$
$$M = \frac{2}{M} + \frac{1}{a_{2j-2}} + \frac{1}{a_{2j+2}} \le \frac{2}{M} + \frac{1}{m} + \frac{1}{m} = \frac{2}{m} + \frac{2}{M}$$

Together this gives $m \ge M$, so m = M. That means a_{2i} is constant as *i* varies, solving the problem.

Second approach (author's solution). As before, we have

$$a_{2k} = \frac{1}{a_{2k-2}} + \frac{2}{a_{2k}} + \frac{1}{a_{2k+2}}$$

The proof proceeds in three steps.

• Define

$$S = \sum_{k} a_{2k}$$
, and $T = \sum_{k} \frac{1}{a_{2k}}$.

Summing gives S = 4T. On the other hand, Cauchy-Schwarz says $S \cdot T \ge n^2$, so $T \ge \frac{1}{2}n$.

• On the other hand,

$$1 = \frac{1}{a_{2k-2}a_{2k}} + \frac{2}{a_{2k}^2} + \frac{1}{a_{2k}a_{2k+2}}$$

Sum this modified statement to obtain

$$n = \sum_{k} \left(\frac{1}{a_{2k}} + \frac{1}{a_{2k+2}} \right)^2 \stackrel{\text{QM-AM}}{\geq} \frac{1}{n} \left(\sum_{k} \frac{1}{a_{2k}} + \frac{1}{a_{2k+2}} \right)^2 = \frac{1}{n} (2T)^2$$

So $T \leq \frac{1}{2}n$.

• Since $T \leq \frac{1}{2}n$ and $T \geq \frac{1}{2}n$, we must have equality everywhere above. This means a_{2k} is a constant sequence.

Remark. The problem is likely intractable over \mathbb{C} , in the sense that one gets a highdegree polynomial which almost certainly has many complex roots. So it seems likely that most solutions must involve some sort of inequality, using the fact we are over $\mathbb{R}_{>0}$ instead.