USAMO 2021/4

Evan Chen

Twitch Solves ISL

Episode 65

Problem

A finite set S of positive integers has the property that, for each $s \in S$, and each positive integer divisor d of s, there exists a unique element $t \in S$ satisfying $\operatorname{gcd}(s, t)=d$. (The elements s and t could be equal.)

Given this information, find all possible values for the number of elements of S.

Video

https://youtu.be/9WNgDETHO1I

External Link

https://aops.com/community/p21498580

Solution

The answer is that $|S|$ must be a power of 2 (including 1), or $|S|=0$ (a trivial case we do not discuss further).

Construction: For any nonnegative integer k, a construction for $|S|=2^{k}$ is given by

$$
S=\left\{\left(p_{1} \text { or } q_{1}\right) \times\left(p_{2} \text { or } q_{2}\right) \times \cdots \times\left(p_{k} \text { or } q_{k}\right)\right\}
$$

for $2 k$ distinct primes $p_{1}, \ldots, p_{k}, q_{1}, \ldots, q_{k}$.
Converse: the main claim is as follows.
Claim. In any valid set S, for any prime p and $x \in S, \nu_{p}(x) \leq 1$.
Proof. Assume for contradiction $e=\nu_{p}(x) \geq 2$.

- On the one hand, by taking x in the statement, we see $\frac{e}{e+1}$ of the elements of S are divisible by p.
- On the other hand, consider a $y \in S$ such that $\nu_{p}(y)=1$ which must exist (say if $\operatorname{gcd}(x, y)=p$. Taking y in the statement, we see $\frac{1}{2}$ of the elements of S are divisible by p.

So $e=1$, contradiction.
Now since $|S|$ equals the number of divisors of any element of S, we are done.

