USAMO 2021/3

Evan Chen

Twitch Solves ISL

Episode 65

Problem

Let $n \geq 2$ be an integer. An $n \times n$ board is initially empty. Each minute, you may perform one of three moves:

- If there is an L-shaped tromino region of three cells without stones on the board (see figure; rotations not allowed), you may place a stone in each of those cells.

- If all cells in a column have a stone, you may remove all stones from that column.
- If all cells in a row have a stone, you may remove all stones from that row.

For which n is it possible that, after some non-zero number of moves, the board has no stones?

Video

https://youtu.be/9WNgDETHO1I

External Link

Solution

The answer is $3 \mid n$.
Construction: For $n=3$, the construction is fairly straightforward, shown below.

This can be extended to any $3 \mid n$.
Polynomial-based proof of converse: Assume for contradiction $3 \nmid n$. We will show the task is impossible even if we allow stones to have real weights in our process. A valid elimination corresponds to a polynomial $P \in \mathbb{R}[x, y]$ such that

$$
\begin{aligned}
\operatorname{deg}_{x} P & \leq n-2 \\
\operatorname{deg}_{y} P & \leq n-2 \\
(1+x+y) P(x, y) & \in\left\langle 1+x+\cdots+x^{n-1}, 1+y+\cdots+y^{n-1}\right\rangle .
\end{aligned}
$$

(Here $\langle\ldots\rangle$ is an ideal of $\mathbb{R}[x, y]$.) In particular, if S is the set of nth roots of unity other than 1 , we should have

$$
\left(1+z_{1}+z_{2}\right) P\left(z_{1}, z_{2}\right)=0
$$

for any $z_{1}, z_{2} \in S$. Since $3 \nmid n$, it follows that $1+z_{1}+z_{2} \neq 0$ always.
So P vanishes on $S \times S$, a contradiction to the bounds on $\operatorname{deg} P$ (by, say, combinatorial nullstellensatz on any nonzero term).

Linear algebraic proof of converse (due to William Wang): Suppose there is a valid sequence of moves. Call r_{j} the number of operations clearing row j, indexing from bottom-to-top. The idea behind the solution is that we are going to calculate, for each cell, the number of times it is operated on entirely as a function of r_{j}. For example, a hypothetical illustration with $n=6$ is partially drawn below, with the number in each cell denoting how many times it was the corner of an L.

$$
\left[\begin{array}{cccccc}
0 & 0 & 0 & 0 & 0 & 0 \\
c_{1} & c_{2} & c_{3}=r_{3} & c_{4}=r_{5}-r_{4} & c_{5}=r_{5} & 0 \\
\vdots & \vdots & r_{2}+r_{3}-r_{5} & r_{5}-r_{3} & r_{4} & 0 \\
\vdots & \vdots & r_{1}+r_{2}+r_{3}-r_{4}-r_{5} & r_{5}-r_{2} & r_{3} & 0 \\
\vdots & \vdots & r_{1}+r_{2}+r_{4}-r_{5} & r_{5}-r_{1} & r_{2} & 0 \\
\vdots & \vdots & r_{1}+r_{4}-r_{5} & r_{5} & r_{1} & 0
\end{array}\right]
$$

Let $a_{i, j}$ be the expression in (i, j). It will also be helpful to define c_{i} in the obvious way as well.

Claim. We have $c_{n}=r_{n}=0, a_{n-1, j}=r_{j}$ and $a_{i, n-1}=c_{i}$.
Proof. The first statement follows since (n, n) may never obtain a stone. The equation $a_{n-1, j}=r_{j}$ follows as both equal the number of times that cell (n, j) obtains a stone. The final equation is similar.

Claim. For $1 \leq i, j \leq n-1$, the following recursion holds:

$$
a_{i, j}+a_{i+1, j}+a_{i+1, j-1}=r_{j}+c_{i+1}
$$

Proof. Focus on cell $(i+1, j)$. The left-hand side counts the number of times that gains a stone while the right-hand side counts the number of times it loses a stone; they must be equal.

We can coerce the table above into matrix form now as follows. Define

$$
K=\left[\begin{array}{cccccccc}
-1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & -1 & -1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & -1 & -1 & \ldots & 0 & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \ldots & -1 & -1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & -1 & -1 \\
1 & 1 & 1 & 1 & \ldots & 1 & 1 & 0
\end{array}\right]
$$

Then define a sequence of matrices M_{i} recursively by $M_{n-1}=\mathrm{id}$, and

$$
M_{i}=\mathrm{id}+K M_{i+1}=\mathrm{id}+K+\cdots+K^{n-1-i}
$$

The matrices are chosen so that, by construction,

$$
\left\langle r_{1}, \ldots, r_{n-1}\right\rangle M_{i}=\left\langle a_{i, 1}, \ldots, a_{i, n-1}\right\rangle
$$

for $i=1,2, \ldots, n-1$. On the other hand, we can extend the recursion one level deeper and obtain

$$
\left\langle r_{1}, \ldots, r_{n-1}\right\rangle M_{0}=\langle 0, \ldots, 0\rangle .
$$

However, the crux of the solution is the following.
Claim. The eigenvalues of K are exactly $-\left(1+e^{\frac{2 \pi i k}{n}}\right)$ for $k=1,2, \ldots, n-1$.
Proof. The matrix $-(K+i d)$ is fairly known to have roots of unity as the coefficients.
However, we are told that apparently

$$
0=\operatorname{det} M_{0}=\operatorname{det}\left(\mathrm{id}+K+K^{2}+\cdots+K^{n-1}\right)
$$

which means $\operatorname{det}\left(K^{n}-\mathrm{id}\right)=0$. This can only happen if K^{n} has eigenvalue 1 , meaning that

$$
[-(1+\omega)]^{n}=1
$$

for ω some $n^{\text {th }}$ root of unity, not necessarily primitive. This can only happen if $|1+\omega|=1$, ergo $3 \mid n$.

