JMO 2021/3

Evan Chen

TWITCH SOLVES ISL

Episode 65

Problem

An equilateral triangle Δ of side length L>0 is given. Suppose that n equilateral triangles with side length 1 and with non-overlapping interiors are drawn inside Δ , such that each unit equilateral triangle has sides parallel to Δ , but with opposite orientation. Prove that

 $n \le \frac{2}{3}L^2.$

Video

https://youtu.be/9WNgDETHO1I

External Link

https://aops.com/community/p21499596

Solution

We present the approach of Andrew Gu. For each triangle, we draw a green regular hexagon of side length 1/2 as shown below.

Claim. All the hexagons are disjoint and lie inside Δ .

Proof. Annoying casework.

Since each hexagon has area $\frac{3\sqrt{3}}{8}$ and lies inside Δ , we conclude

$$\frac{3\sqrt{3}}{8} \cdot n \le \frac{\sqrt{3}}{4}L^2 \implies n \le \frac{2}{3}L^2.$$

Remark. The constant $\frac{2}{3}$ is sharp and cannot be improved. The following tessellation shows how to achieve the $\frac{2}{3}$ density. In the figure on the left, one of the green hexagons is drawn in for illustration. The version on the right has all the hexagons.

