JMO 2021/3

Evan Chen
Twitch Solves ISL
Episode 65

Problem

An equilateral triangle Δ of side length $L>0$ is given. Suppose that n equilateral triangles with side length 1 and with non-overlapping interiors are drawn inside Δ, such that each unit equilateral triangle has sides parallel to Δ, but with opposite orientation. Prove that

$$
n \leq \frac{2}{3} L^{2} .
$$

Video

https://youtu.be/9WNgDETHOII

External Link

https://aops.com/community/p21499596

Solution

We present the approach of Andrew Gu. For each triangle, we draw a green regular hexagon of side length $1 / 2$ as shown below.

Claim. All the hexagons are disjoint and lie inside Δ.
Proof. Annoying casework.
Since each hexagon has area $\frac{3 \sqrt{3}}{8}$ and lies inside Δ, we conclude

$$
\frac{3 \sqrt{3}}{8} \cdot n \leq \frac{\sqrt{3}}{4} L^{2} \Longrightarrow n \leq \frac{2}{3} L^{2} .
$$

Remark. The constant $\frac{2}{3}$ is sharp and cannot be improved. The following tessellation shows how to achieve the $\frac{2}{3}$ density. In the figure on the left, one of the green hexagons is drawn in for illustration. The version on the right has all the hexagons.

