JMO 2021/1

Evan Chen

TWITCH SOLVES ISL

Episode 65

Problem

Find all functions $f: \mathbb{N} \to \mathbb{N}$ which satisfy $f(a^2 + b^2) = f(a)f(b)$ and $f(a^2) = f(a)^2$ for all positive integers a and b.

Video

https://youtu.be/9WNgDETH01I

External Link

https://aops.com/community/p21498724

Solution

The answer is $f \equiv 1$ only, which works. We prove it's the only one. The bulk of the problem is:

Claim. If f(a) = f(b) = 1 and a > b, then $f(a^2 - b^2) = f(2ab) = 1$.

Proof. Write

$$1 = f(a)f(b) = f(a^{2} + b^{2}) = \sqrt{f((a^{2} + b^{2})^{2})}$$

$$= \sqrt{f((a^{2} - b^{2})^{2} + (2ab)^{2})}$$

$$= \sqrt{f(a^{2} - b^{2})f(2ab)}.$$

By setting a = b = 1 in the given statement we get f(1) = f(2) = 1. Now a simple induction on n shows f(n) = 1:

- If n = 2k take (u, v) = (k, 1) hence 2uv = n.
- If n = 2k + 1 take (u, v) = (k + 1, k) hence $u^2 v^2 = n$.