Canada 2021/4 Evan Chen

TWITCH SOLVES ISL

Episode 65

Problem

A function $f \colon \mathbb{N} \to \mathbb{N}$ is called *Canadian* if it satisfies

 $\gcd\left(f(f(x)),f(x+y)\right)=\gcd(x,y)$

for all pairs of positive integers x and y. Find all positive integers m such that f(m) = m for all Canadian functions f.

Video

https://youtu.be/cnCr4S2tU04

External Link

https://aops.com/community/p20902310

Solution

This problem and solution were suggested by Eric Shen (CAN).

The answer is any integer which is not 1 or a prime power. The following functions show this, for any nonnegative integer e (including e = 0) and prime p:

$$f(x) = \begin{cases} p^{e+1} & x = p^e \\ p^e & x = p^{e+1} \\ x & \text{otherwise.} \end{cases}$$

Here are two approaches.

Solution from Twitch Solves ISL. By letting x = a and x + y = b, we get an addition-free statement:

$$gcd(f(f(a)), f(b)) = gcd(a, b) \quad \forall a < b.$$

In particular, if we fix a value of b, we see that f(b) is divisible by any proper divisor of *b*.

Claim. We have $x \mid f(x)$ for any non prime power x.

Proof. Fix b = x and vary a across prime powers dividing x.

Claim. We have f(x) = x for all x which is not a prime power.

Proof. Since x is not a prime power, we have $x \mid f(x)$, and in particular, f(x) is not a prime power, so $x \mid f(x) \mid f(f(x))$. Now assume that x < f(x); then

$$f(f(x)) = \gcd(f(f(x)), f(f(x))) = \gcd(x, f(x)) \mid x$$

so x = f(x) = f(f(x)), contradiction.

Remark (Finding the construction). One can also deduce, though we don't need to, that f(f(x)) = x from here. Indeed fix x, and let y = (x + f(f(x)) + 3)! to conclude. Together with the fact that $p^{e-1} \mid f(p^e)$ for any prime p. (from $(a, b) = (p^{e-1}, p^e)$) this motivates the construction given at the start of the proof.

Approach by Kevin Min. We prove the following claim:

Claim. f(f(x)) = x for all x

Proof. Let P(x,y) denote the given equation. For any prime p and number x, let $v_p(x) = k$. Then note that if $p^{k+1} \mid f(f(x))$, then we cannot have $p^{k+1} \mid f(n)$ for any n > f(x) or else P(x, n - x) leads to a contradiction. But taking $P(p^z, p^z)$ for arbitrarily large z we get $p^{k+1} | f(n)$ for arbitrarily large n, contradiction. Similarly, if $p^k \nmid f(f(x))$ then $P(x, p^k)$ gives a contradiction. Thus $v_p(f(f(x))) = v_p(x)$ for all primes p, so f(f(x)) = x.

Then the given statement reduces to gcd(x, f(x+y)) = gcd(x, x+y). Let z = x + yand let Q(x,z) denote the given statement, where z > x. Then suppose z is not a prime power, so for some prime p let $v_p(z) = m, z = p^m \cdot c$. Then from $Q(p^m, z)$ we get $p^m \mid f(z)$, so $z \mid f(z)$. But then f(z) isn't a prime power either, so $f(z) \mid f(f(z))$, and as z = f(f(z)) we must have z = f(z).