Shortlist 2014 A2

Evan Chen

Twitch Solves ISL

Episode 64

Problem

Define the function $f:(0,1) \rightarrow(0,1)$ by

$$
f(x)= \begin{cases}x+\frac{1}{2} & x<\frac{1}{2} \\ x^{2} & x \geq \frac{1}{2}\end{cases}
$$

Let a and b be two real numbers such that $0<a<b<1$. We define the sequences a_{n} and b_{n} by $a_{0}=a, b_{0}=b$, and $a_{n}=f\left(a_{n-1}\right), b_{n}=f\left(b_{n-1}\right)$ for $n>0$. Show that there exists a positive integer n such that

$$
\left(a_{n}-a_{n-1}\right)\left(b_{n}-b_{n-1}\right)<0
$$

Video

https://youtu.be/LrqjMNxmzcw

External Link

https://aops.com/community/p5083585

Solution

Note that f has no fixed points. Assume for contradiction $a<b$ do not have this property. Call an index i up if $a_{i+1}>a_{i}$ and $b_{i+1}>b_{i}$, else a down index. It's clear there are infinitely many up indices.

Now let $d_{n}=\left|b_{n}-a_{n}\right|$.
Claim. We have

- If d_{n} is a down index, then $d_{n+1}=d_{n}$.
- If d_{n} is an up index, then $d_{n+1} \geq d_{n}+(b-a)^{2}$.

Proof. The first case is obvious. For the other case, note that

$$
\begin{aligned}
d_{n+1} & =\left|b_{n}^{2}-a_{n}^{2}\right|=\left|b_{n}+a_{n}\right| \cdot\left|b_{n}-a_{n}\right| \\
& \geq\left(\frac{1}{2}+\left(\frac{1}{2}+d_{n}\right)\right) \cdot d_{n} \\
& \geq d_{n}+(b-a)^{2} .
\end{aligned}
$$

On the other hand, we obviously have $d_{n}<1$ for all n. Since there are infinitely many up indices, the previous claim gives a contradiction.

