CAMO 2021/2
 Evan Chen
 Twitch Solves ISL
 Episode 62

Problem

Find all functions $f: \mathbb{R}_{>0} \rightarrow \mathbb{R}_{\geq 0}$ satisfying

$$
(f(x)+f(y))^{3}=x f(x)+y f(y)+3 f(x y)(f(x)+f(y))
$$

for all positive real numbers x and y.

Video

https://youtu.be/AlIvbT2FCI4

External Link

https://aops.com/community/p20150150

Solution

The answer is any function of the form

$$
f(x)= \begin{cases}0 & x \notin S \\ \sqrt{x} & x \in S\end{cases}
$$

where S is a subset of $\mathbb{R}_{>0}$ which is closed under multiplication and division (i.e. a multiplicative subgroup). The verification is left to the reader.

Let $k=f(1) \geq 0$, plug in $x=y=1$ to get

$$
(2 k)^{3}=2 k+6 k^{2} \Longrightarrow k \in\{0,1\} .
$$

Claim. If $k=0$, then f is identically zero.
Proof. Plugging in $y=1$ gives

$$
f(x)^{3}=x f(x)+3 f(x)^{2} \Longrightarrow f(x) \in\left\{0, \frac{3+\sqrt{9+4 x}}{2}\right\} .
$$

We say t is bad if $f(t) \neq 0$. By plugging in $x=y=t$, we find that if t is bad then t^{2} is bad and actually

$$
8 \cdot\left(\frac{3+\sqrt{9+4 t}}{2}\right)^{3}=2 t \cdot \frac{3+\sqrt{9+4 t}}{2}+3 \cdot \frac{3+\sqrt{9+4 t^{2}}}{2} \cdot(3+\sqrt{9+4 t})
$$

Dividing out:

$$
2(3+\sqrt{9+4 t})^{2}=2 t+3\left(3+\sqrt{9+4 t^{2}}\right) .
$$

This has finitely many solutions in t though, while a single bad value of t (other than 1) should generate infinitely many. Contradiction.

Otherwise, if $k=1$, then plugging in $y=1$ gives

$$
(f(x)+1)^{3}=x f(x)+1+3 f(x)[f(x)+1] .
$$

and hence

$$
f(x)^{3}=x f(x) \Longrightarrow f(x) \in\{0, \sqrt{x}\} .
$$

So, to finish, we only need to observe that if $f(x)=\sqrt{x}$ and $f(y)=\sqrt{y}$, then plugging in x and y shows $f(x y)=\sqrt{x y}$ as needed.

