China TST 2021/1/3
 Evan Chen

Twitch Solves ISL

Episode 60

Problem

Let n be a positive integer. Prove that for any integers $a_{1}, a_{2}, \ldots a_{n}$ at least $\left\lceil\frac{n(n-6)}{19}\right\rceil$ numbers from the set $\left\{1,2, \ldots,\binom{n}{2}\right\}$ cannot be represented as $a_{i}-a_{j}$ where $1 \leq i, j \leq n$.

Video

https://youtu.be/VpupgdW1PBg

External Link

https://aops.com/community/p20980490

Solution

The idea is to consider the generating function

$$
f(X)=\sum_{i} X^{a_{i}}
$$

Then, we may write

$$
f(X) f\left(X^{-1}\right)-\sum_{-\binom{n}{2}}^{\binom{n}{2}} X^{k}=(n-1)+\sum_{k>0} c_{k}\left(X^{k}+X^{-k}\right)
$$

for some constants c_{k}. It is easy to see that

- Every $c_{k} \geq-1$, and $c_{k}=-1$ exactly if k is "missed";
- $\sum c_{k}=0 ;$ and hence
- if t is the number of "missed" terms, then $\sum\left|c_{k}\right|=2 t$, and we want $t \geq\left\lceil\frac{n(n-6)}{19}\right\rceil$.

We now specialize to the choice

$$
X=\omega=\exp \left(\frac{3 \pi i}{n^{2}-n+1}\right)
$$

On the one hand, the left-hand side is at most $(n-1)+4 t$, by the triangle inequality.
On the other hand, the left-hand side equals

$$
|f(\omega)|^{2}+\sum_{-\binom{n}{2}}^{\binom{n}{2}} \omega^{k}
$$

This is a real number, because the expression is self-conjugate.
We drop the first term, because it is nonnegative, and evaluate the second sum exactly:

$$
\begin{aligned}
\sum_{-\binom{n}{2}}^{\binom{n}{2}} \omega^{k} & =-\omega^{-\binom{n}{2}} \cdot \frac{\omega^{n^{2}-n+1}-1}{\omega-1}=\frac{2}{\omega^{\binom{n}{2}+1}-\omega^{\binom{n}{2}}}=\frac{2}{\omega^{\binom{n}{2}+1}+\frac{1}{\omega^{\left(\begin{array}{c}
2
\end{array}\right)+1}}} \\
& =\sec \left(\frac{1}{n^{2}-n+1} \cdot 3 \pi\right)=\frac{1}{\sin \left(\pi \cdot \frac{\left(n^{2}-n+1\right)-3(n(n-1)+2)}{2 n^{2}-2 n+2}\right)} \\
& =\frac{1}{\sin \left(\pi \cdot \frac{-2 n^{2}+2 n-5}{2 n^{2}-2 n+2}\right)}=\frac{1}{\sin \left(\pi \cdot\left(\frac{-3}{2 n^{2}-2 n+2}\right)-\pi\right)} \\
& =\frac{1}{\sin \left(\pi \cdot \frac{3}{2 n^{2}-2 n+2}\right)} \geq \frac{2 n^{2}-2 n+2}{3 \pi} \geq \frac{2 n^{2}-2 n+2}{19 / 2} \\
& =\frac{4 n^{2}-4 n+4}{19} .
\end{aligned}
$$

Hence, it follows that

$$
4 t \geq \frac{4 n^{2}-4 n+4}{19}-(n-1) \geq \frac{4 n^{2}-23 n+23}{19} \geq \frac{4 n^{2}-24 n}{19}
$$

The problem is solved.
Remark. $6 \pi<19$.

