CAMO 2021/6

Evan Chen

TWITCH SOLVES ISL

Episode 60

Problem

If a, b, c > 0 and a + b + c = 6 prove that

$$\frac{a^2-4}{4a^2-9a+6}+\frac{b^2-4}{4b^2-9b+6}+\frac{c^2-4}{4c^2-9c+6}\leq 0.$$

Video

https://youtu.be/te7Lc344aIs

Solution

First, note that

$$\sum_{\text{cyc}} \left[\frac{3a^2 - 12}{4a^2 - 9a + 6} + (2 - a) \right] = \sum_{\text{cyc}} \frac{(2 - a)(4a^2 - 9a + 6) + 3a^2 - 12}{4a^2 - 9a + 6}$$
$$= \sum_{\text{cyc}} \frac{-4a^3 + 20a^2 - 24a}{4a^2 - 9a + 6}$$
$$= \sum_{\text{cyc}} \frac{-4a(a - 2)(a - 3)}{4a^2 - 9a + 6}$$

So, the inequality amounts to saying that

$$\sum_{\text{cvc}} \frac{a(a-2)(a-3)}{4a^2 - 9a + 6} \ge 0 \qquad \forall a+b+c = 6.$$

Let $f(x) = \frac{x(x-2)(x-3)}{4x^2-9x+6}$, and define the piecewise function $g: [0,6] \to \mathbb{R}$ by

$$g(x) = \begin{cases} x & x \in [0, 2/3] \\ -\frac{1}{2}(x-2) & x \in [2/3, 16/7] \\ \frac{1}{5}(x-3) & x \in [16/7, 6]. \end{cases}$$

The graph of f and g are drawn below in red and blue respectively.

Claim. We have $f(x) \ge g(x)$ for all $x \in [0, 6]$.

Proof. Direct calculation.

Hence, it suffices to show $g(a) + g(b) + g(c) \ge 0$ for all a + b + c = 6. The proof is divided in cases:

- If $\min(a, b, c) \ge \frac{2}{3}$, then Jensen finishes.
- If $a \leq \frac{2}{3}$ and $b, c \geq \frac{2}{3}$, then by Jensen on the convex part of g, it is enough to show that $g(a) + 2g(3 a/2) \geq 0$, which is easy.
- If $a, b \leq \frac{2}{3}$, then $c \geq 3$, so all terms are nonnegative.

This finishes the proof.