Shortlist 1998 N8

Evan Chen
Twitch Solves ISL
Episode 59

Problem

Let $a_{0}, a_{1}, a_{2}, \ldots$ be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_{i}+2 a_{j}+4 a_{k}$, where i, j and k are not necessarily distinct. Determine a_{1998}.

Video

https://youtu.be/46z5jJ-rauc

External Link

https://aops.com/community/p124444

Solution

It is clear by induction there is at most one sequence, since at any point a_{i} must be equal to the smallest integer not expressible using a_{0} through a_{i-1}.

On the other hand, one can give an example of a sequence: take $\left\{a_{i}\right\}$ as a set to be the numbers that have only the digits 0 and 1 in their octal (base- 8) representation.

Since

$$
1998=2048-50=1984+14=11111001110_{2},
$$

it follows the answer is $11111001110_{8}=1,227,096,648$.

