ELMO 2010/2

Evan Chen

Twitch Solves ISL

Episode 59

Problem

Let r and s be positive integers. Define $a_{0}=0, a_{1}=1$, and $a_{n}=r a_{n-1}+s a_{n-2}$ for $n \geq 2$. Let $f_{n}=a_{1} a_{2} \ldots a_{n}$. Prove that $\frac{f_{n}}{f_{k} f_{n-k}}$ is an integer for all integers n and k such that $0<k<n$.

Video

https://youtu.be/-tfVetEaVdo

External Link

https://aops.com/community/p2731491

Solution

It's equivalent to show that for integers k, m we have

$$
a_{1} \ldots a_{k} \mid a_{m} \ldots a_{m+k-1} .
$$

From the theory of linear recurrences, we know there are algebraic integers α and β such that a_{n} has a closed form

$$
a_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}
$$

(Namely, α and β are the roots of the polynomial $T^{2}-r T-s=0$. Note that since $s>0$ it follows $\alpha \neq \beta$.)

Then, $(\boldsymbol{\oplus})$ rewrites as

$$
\frac{\left(\alpha^{m}-\beta^{m}\right)\left(\alpha^{m+1}-\beta^{m+1}\right) \ldots\left(\alpha^{m+k-1}-\beta^{m+k-1}\right)}{(\alpha-\beta)\left(\alpha^{2}-\beta^{2}\right) \ldots\left(\alpha^{k}-\beta^{k}\right)} .
$$

Claim. We get a divisibility as polynomials in α and β.
Proof. Since this is homogeneous, it suffices to show for $\beta=1, \alpha=X$:

$$
\frac{\left(X^{m}-1^{m}\right)\left(X^{m+1}-1^{m+1}\right) \ldots\left(X^{m+k-1}-1^{m+k-1}\right)}{(X-1)\left(X^{2}-1^{2}\right) \ldots\left(X^{k}-1^{k}\right)}
$$

If ζ is a primitive r th root of unity, it appears at least as many times on top as on bottom.

Hence, the number in $(\boldsymbol{\oplus})$ is a rational algebraic integer, so it is an integer.

