Shortlist 2000 N6

Evan Chen
Twitch Solves ISL
Episode 58

Problem

Show that the set of positive integers that cannot be represented as a sum of distinct perfect squares is finite.

Video

https://youtu.be/2gpmGY212VU

External Link

https://aops.com/community/p1218963

Solution

Say a number is "good" if it satisfies the property. We start with the following base cases:

Claim. Every $1 \bmod 4$ number from 37 to 133 is good, and in fact can be written using squares at most 121.

Proof. We only need to check numbers which have a $3 \bmod 4$ prime factor with odd multiplicity, by Christmas theorem. This is easy:

$$
\begin{aligned}
57 & =6^{2}+4^{2}+2^{2}+1^{2} \\
69 & =8^{2}+2^{2}+1^{2} \\
77 & =8^{2}+3^{2}+2^{2} \\
93 & =8^{2}+5^{2}+2^{2} \\
105 & =1^{2}+2^{2}+1^{2} \\
129 & =10^{2}+5^{2}+2^{2} \\
133 & =8^{2}+7^{2}+4^{2}+2^{2} .
\end{aligned}
$$

Then, the following corollaries take place:

- Every $1 \bmod 4$ number from 37 to 97 can be written with squares at most 81 .
- By adding $10^{2}=100$, to the previous bullet, in tandem with the claim itself, every $1 \bmod 4$ number from 37 to 197 can be written with squares in the set $\left\{1^{2}, 2^{2}, \ldots, 11^{2}\right\}$.
- By adding $12^{2}=144$ to the previous bullet, every $1 \bmod 4$ number from 37 to 331 can be written with squares in the set $\left\{1^{2}, 2^{2}, \ldots, 11^{2}, 12^{2}\right\}$.
- By adding $14^{2}=196$ to the previous bullet, every $1 \bmod 4$ number from 37 to 527 can be written with squares in the set $\left\{1^{2}, 2^{2}, \ldots, 11^{2}, 12^{2}, 14^{2}\right\}$.
- ...and so on.

In this way, every sufficiently large $1 \bmod 4$ number may be written as the sum of distinct squares from the set

$$
\left\{1^{2}, 2^{2}, \ldots, 11^{2}\right\} \cup\left\{12^{2}, 14^{2}, 16^{2}, 18^{2} \ldots\right\} .
$$

Then a general sufficiently large number may be reduced to this case by subtracting $13^{2}, 15^{2}, 17^{2}$ if necessary to reduce it to a $1 \bmod 4$ number.

