Putnam 2020 B6
 Evan Chen

Twitch Solves ISL

Episode 58

Problem

Let n be a positive integer. Prove that

$$
\sum_{k=1}^{n}(-1)^{\lfloor k(\sqrt{2}-1)\rfloor} \geq 0
$$

Video

https://youtu.be/IQWO75AEeyQ

External Link

https://aops.com/community/p20537381

Solution

For concreteness, we exhibit the following large table showing the first 17 terms:

$a_{n}=$	$\lfloor(\sqrt{2}+2) n\rfloor$	3			6			10		13		17		
$b_{n}=$	[$2 n$]	1	2	4	5	7	8	9	11	12	14	15	16	
$c_{n}=$	($\sqrt{2}-1) n\rfloor$	0	0	1	1	2	2	2	3	3	4	4	4	
$d_{n}=$	$c_{n+1}-c_{n}$	0	1	0	1	0	0	1	0	1	0	0	1	

By Beatty's Theorem, the sequences a_{n} and b_{n} are disjoint and form a partition of \mathbb{N}. On the other hand, in the bottom sequence, the "consecutive runs" should all have length either 2 or 3 ; the i th block has length $a_{i}-a_{i-1}-1$. (Here $a_{0}=0$ for convenience.)

Our task is to prove that $\sum_{1}^{n}(-1)^{c_{n}} \geq 0$. Grouping into blocks in the bottom ending with odd c_{n}, it is enough to show the following inequality for any k :

$$
\begin{aligned}
& \left(a_{1}-a_{0}-1\right)+\left(a_{3}-a_{2}-1\right)+\cdots+\left(a_{2 k-1}-a_{2 k-2}-1\right) \\
& \geq\left(a_{2}-a_{1}-1\right)+\left(a_{4}-a_{3}-1\right)+\cdots+\left(a_{2 k}-a_{2 k-1}-1\right) .
\end{aligned}
$$

Using the fact that $a_{k}=3 k+c_{k}$, we can replace every a_{k} with c_{k} above. Then, rearranging gives the desired is equivalent to

$$
\sum_{i=1}^{2 k-1}(-1)^{i}(\underbrace{c_{i+1}-c_{i}}_{=0 \text { or } 1}) \geq 0
$$

We recognize the inner term is just d_{i}. In fact, I claim that

$$
\sum_{i=1}^{\ell}(-1)^{i} d_{i} \geq 0
$$

for any integer ℓ.
Claim. If we read c_{n} from left to right, the indices for which c_{n} changes value correspond to the blocks in length 3 in d_{n}. More explicitly, the i th block of d_{i} has length 3 if and only if $c_{i+1} \neq c_{i}$.

Proof. Imagine reading b_{i} from left to right. If b_{i}, b_{i+1} are adjacent (i.e. $b_{i+1}-b_{i}=1$) then $a_{i+1}=a_{i}+3$, and $a_{i+2}=a_{i+1}+3$. So looking ahead, this gives two blocks of length 2 in the future. The proof is similar if the $b_{i+1}-b_{i}=2$.

So suppose we take the first m blocks of d_{i}. Each individual block sums to ± 1 (because only the last bit is 1). Moreover, the sign of the i th block is +1 if and only if c_{i} is even.

Thus, through the long convoluted chain of reductions $n \rightarrow k \rightarrow \ell \rightarrow m$, we have the same inequality with a smaller input value (since $n>2 k \geq \ell>m$). Since the inequality is clearly true for base cases $n \leq 10$ (say), the proof is completed by strong induction.

