CHMMC 2021/6 Evan Chen

TWITCH SOLVES ISL

Episode 58

Problem

Let ABC be a triangle with circumcenter O. The interior bisector of $\angle BAC$ intersects BC at D. Circle ω_A is tangent to segments AB and AC and internally tangent to the circumcircle at P. Let E and F be the points at which the B-excircle and C-excircle are tangent to AC and AB. Suppose that lines BE and CF pass through a common point N on the circumcircle of AEF.

- (a) Prove that the circumcircle of PDO passes through N.
- (b) Suppose that PD/BC = 2/7. Find, with proof, the value of $\cos \angle BAC$.

Video

https://youtu.be/KZ6Gyc4an9M

Solution

Let V be the Bevan point, G be the centroid, and M_bM_c the A-midline. Let M and L be the arc midpoints.

Unconditionally, V is the midpoint of \overline{IO} , V is the antipode of A on (AEF), and G lies on \overline{IN} in a 1 : 2 ratio.

Claim. The point I is the midpoint of \overline{AM} , and NB = NC.

Proof. We are given that $\angle ENF = \angle CAB = \angle CNB$, so we may take a homothety of ratio $-\frac{1}{2}$ centered at G which maps N to I, B to M_b , C to M_c . The resulting circle is known to pass through A. Since $(AM_bM_c) \ni I$, then I is the midpoint of \overline{AM} .

For the latter part, this follows from $IM_b = IM_c$.

Claim. Point I lies on (AEFV).

Proof. Since I is the midpoint, it follows $\overline{VOI} \perp \overline{AI}$.

Claim. Point D is the center of IPMN, and the midpoint of \overline{IM} .

Proof. Since MA = 2MI = 2MB, it follows by shooting lemma that $MD = \frac{1}{2}MI$. Also, we have $\angle INM = \angle INL = \angle IAL = 90^\circ$ and $\angle MPI = 90^\circ$, so we find that NBMC is a rhombus, so D is the midpoint of \overline{IM} .

Finally, to show prove part (a), we first note that ADON is cyclic from power of a point at M. Thus we compute

$$\measuredangle PDN = 2\measuredangle PMN = 2(90^\circ - \measuredangle MLP) = 2\measuredangle PLM = \measuredangle POM = \measuredangle PON.$$

For part (b), since $DP = \frac{1}{2}MI = \frac{1}{2}MB$, we have

$$\frac{4}{7}a = BM = 2R\sin(A/2) = \frac{a}{\sin A}\sin(A/2) = \frac{a}{2\cos(A/2)}$$

$$\implies \cos(A/2) = \frac{7}{8}$$

$$\cos A = 2 \cdot \left(\frac{7}{8}\right)^2 - 1 = \frac{34}{64} = \frac{17}{32}.$$