# Besant 1895 Evan Chen

TWITCH SOLVES ISL

Episode 57

#### Problem

Let k be a parabola with focus F. Let B and C be points on k, and suppose the tangents to k at B and C meet at a point A. Denote by O the circumcenter of  $\triangle ABC$ . Prove that  $AF \perp FO$ .

## Video

https://youtu.be/2oMAORpDBbA

## **External Link**

https://aops.com/community/c5h202907p20773588

#### Solution

We will show USAMO 2008 is equivalent to this problem, from which the reader can extract a synthetic proof (e.g. see David in https://aops.com/community/c5h202907p20773588)

Reflect F over AB and AC to obtain points X and Y. Then BX = BF, CF = CY. By the problem condition,  $\angle MAB = \angle FBA = \angle ABX$ , so  $BX \parallel MA$ . Similarly,  $CY \parallel MA$ .



As AX = AF = AY, we have  $XY \perp MA$ . Therefore, we may draw a parabola through B and C, tangent to AB and AC, with focus F and with directrix coinciding with the line XY. Hence  $\angle OFA = 90^{\circ}$  as needed.