Besant 1895

Evan Chen

Twitch Solves ISL
Episode 57

Problem

Let k be a parabola with focus F. Let B and C be points on k, and suppose the tangents to k at B and C meet at a point A. Denote by O the circumcenter of $\triangle A B C$. Prove that $A F \perp F O$.

Video

https://youtu.be/2oMAORpDBbA

External Link

https://aops.com/community/c5h202907p20773588

Solution

We will show USAMO 2008 is equivalent to this problem, from which the reader can extract a synthetic proof (e.g. see David in https://aops.com/community/c5h202907p20773588)

Reflect F over $A B$ and $A C$ to obtain points X and Y. Then $B X=B F, C F=C Y$. By the problem condition, $\measuredangle M A B=\measuredangle F B A=\measuredangle A B X$, so $B X \| M A$. Similarly, $C Y \| M A$.

As $A X=A F=A Y$, we have $X Y \perp M A$. Therefore, we may draw a parabola through B and C, tangent to $A B$ and $A C$, with focus F and with directrix coinciding with the line $X Y$. Hence $\angle O F A=90^{\circ}$ as needed.

