USA TST 2021/3 Evan Chen

TWITCH SOLVES ISL

Episode 56

Problem

Find all functions $f \colon \mathbb{R} \to \mathbb{R}$ that satisfy the inequality

$$f(y) - \left(\frac{z-y}{z-x}f(x) + \frac{y-x}{z-x}f(z)\right) \le f\left(\frac{x+z}{2}\right) - \frac{f(x)+f(z)}{2}$$

for all real numbers x < y < z.

Video

https://youtu.be/J3cOwLGB2ZY

External Link

https://aops.com/community/p20672681

Solution

Answer: all functions of the form $f(y) = ay^2 + by + c$, where a, b, c are constants with $a \le 0$.

If I = (x, z) is an interval, we say that a real number α is a *supergradient* of f at $y \in I$ if we always have

$$f(t) \le f(y) + \alpha(t - y)$$

for every $t \in I$. (This inequality may be familiar as the so-called "tangent line trick". A cartoon of this situation is drawn below for intuition.) We will also say α is a supergradient of f at y, without reference to the interval, if α is a supergradient of *some* open interval containing y.

Claim. The problem condition is equivalent to asserting that $\frac{f(z)-f(x)}{z-x}$ is a supergradient of f at $\frac{x+z}{2}$ for the interval (x, z), for every x < z.

Proof. This is just manipulation.

At this point, we may readily verify that all claimed quadratic functions $f(x) = ax^2 + bx + c$ work — these functions are concave, so the graphs lie below the tangent line at any point. Given x < z, the tangent at $\frac{x+z}{2}$ has slope given by the derivative f'(x) = 2ax + b, that is

$$f'\left(\frac{x+z}{2}\right) = 2a \cdot \frac{x+z}{2} + b = \frac{f(z) - f(x)}{z-x}$$

as claimed. (Of course, it is also easy to verify the condition directly by elementary means, since it is just a polynomial inequality.)

Now suppose f satisfies the required condition; we prove that it has the above form.

Claim. The function f is concave.

Proof. Choose any $\Delta > \max\{z - y, y - x\}$. Since f has a supergradient α at y over the interval $(y - \Delta, y + \Delta)$, and this interval includes x and z, we have

$$\frac{z-y}{z-x}f(x) + \frac{y-x}{z-x}f(z) \le \frac{z-y}{z-x}(f(y) + \alpha(x-y)) + \frac{y-x}{z-x}(f(y) + \alpha(z-y)) = f(y).$$

That is, f is a concave function. Continuity follows from the fact that any concave function on \mathbb{R} is automatically continuous.

Lemma (see e.g. https://math.stackexchange.com/a/615161 for picture). Any concave function f on \mathbb{R} is continuous.

Proof. Suppose we wish to prove continuity at $p \in \mathbb{R}$. Choose any real numbers a and b with $a . For any <math>0 < \varepsilon < \max(b - p, p - a)$ we always have

$$f(p) + \frac{f(b) - f(p)}{b - p}\varepsilon \le f(p + \varepsilon) \le f(p) + \frac{f(p) - f(a)}{p - a}\varepsilon$$

which implies right continuity; the proof for left continuity is the same.

Claim. The function f cannot have more than one supergradient at any given point. *Proof.* Fix $y \in \mathbb{R}$. For t > 0, let's define the function

$$g(t) = \frac{f(y) - f(y-t)}{t} - \frac{f(y+t) - f(y)}{t}.$$

We contend that $g(\varepsilon) \leq \frac{3}{5}g(3\varepsilon)$ for any $\varepsilon > 0$. Indeed by the problem condition,

$$f(y) \le f(y-\varepsilon) + \frac{f(y+\varepsilon) - f(y-3\varepsilon)}{4}$$

$$f(y) \le f(y+\varepsilon) - \frac{f(y+3\varepsilon) - f(y-\varepsilon)}{4}.$$

$$y = 3\varepsilon$$

$$y = 3\varepsilon$$

Summing gives the desired conclusion.

Now suppose that f has two supergradients $\alpha < \alpha'$ at point y. For small enough ε , we should have we have $f(y - \varepsilon) \leq f(y) - \alpha'\varepsilon$ and $f(y + \varepsilon) \leq f(y) + \alpha\varepsilon$, hence

$$g(\varepsilon) = \frac{f(y) - f(y - \varepsilon)}{\varepsilon} - \frac{f(y + \varepsilon) - f(y)}{\varepsilon} \ge \alpha' - \alpha$$

This is impossible since $g(\varepsilon)$ may be arbitrarily small.

Claim. The function f is quadratic on the rational numbers.

Proof. Consider any four-term arithmetic progression x, x + d, x + 2d, x + 3d. Because (f(x+2d) - f(x+d))/d and (f(x+3d) - f(x))/3d are both supergradients of f at the point x + 3d/2, they must be equal, hence

$$f(x+3d) - 3f(x+2d) + 3f(x+d) - f(x) = 0.$$
 (1)

If we fix d = 1/n, it follows inductively that f agrees with a quadratic function \tilde{f}_n on the set $\frac{1}{n}\mathbb{Z}$. On the other hand, for any $m \neq n$, we apparently have $\tilde{f}_n = \tilde{f}_{mn} = \tilde{f}_m$, so the quadratic functions on each "layer" are all equal.

Since f is continuous, it follows f is quadratic, as needed.

Remark (Alternate finish using differentiability due to Michael Ren). In the proof of the main claim (about uniqueness of supergradients), we can actually notice the two terms $\frac{f(y)-f(y-t)}{t}$ and $\frac{f(y+t)-f(y)}{t}$ in the definition of g(t) are both monotonic (by concavity). Since we supplied a proof that $\lim_{t\to 0} g(t) = 0$, we find f is differentiable.

Now, if the derivative at some point exists, it must coincide with all the supergradients; (informally, this is why "tangent line trick" always has the slope as the derivative, and formally, we use the mean value theorem). In other words, we must have

$$f(x+y) - f(x-y) = 2f'(x) \cdot y$$

holds for all real numbers x and y. By choosing y = 1 we obtain that f'(x) = f(x+1) - f(x-1) which means f' is also continuous.

Finally differentiating both sides with respect to y gives

$$f'(x+y) - f'(x-y) = 2f'(x)$$

which means f' obeys Jensen's functional equation. Since f' is continuous, this means f' is linear. Thus f is quadratic, as needed.