USA TST 2021/3

Evan Chen

Twitch Solves ISL

Episode 56

Problem

Find all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfy the inequality

$$
f(y)-\left(\frac{z-y}{z-x} f(x)+\frac{y-x}{z-x} f(z)\right) \leq f\left(\frac{x+z}{2}\right)-\frac{f(x)+f(z)}{2}
$$

for all real numbers $x<y<z$.

Video

https://youtu.be/J3c0wLGB2ZY

External Link

https://aops.com/community/p20672681

Solution

Answer: all functions of the form $f(y)=a y^{2}+b y+c$, where a, b, c are constants with $a \leq 0$.

If $I=(x, z)$ is an interval, we say that a real number α is a supergradient of f at $y \in I$ if we always have

$$
f(t) \leq f(y)+\alpha(t-y)
$$

for every $t \in I$. (This inequality may be familiar as the so-called "tangent line trick". A cartoon of this situation is drawn below for intuition.) We will also say α is a supergradient of f at y, without reference to the interval, if α is a supergradient of some open interval containing y.

Claim. The problem condition is equivalent to asserting that $\frac{f(z)-f(x)}{z-x}$ is a supergradient of f at $\frac{x+z}{2}$ for the interval (x, z), for every $x<z$.

Proof. This is just manipulation.
At this point, we may readily verify that all claimed quadratic functions $f(x)=$ $a x^{2}+b x+c$ work - these functions are concave, so the graphs lie below the tangent line at any point. Given $x<z$, the tangent at $\frac{x+z}{2}$ has slope given by the derivative $f^{\prime}(x)=2 a x+b$, that is

$$
f^{\prime}\left(\frac{x+z}{2}\right)=2 a \cdot \frac{x+z}{2}+b=\frac{f(z)-f(x)}{z-x}
$$

as claimed. (Of course, it is also easy to verify the condition directly by elementary means, since it is just a polynomial inequality.)

Now suppose f satisfies the required condition; we prove that it has the above form.
Claim. The function f is concave.
Proof. Choose any $\Delta>\max \{z-y, y-x\}$. Since f has a supergradient α at y over the interval $(y-\Delta, y+\Delta)$, and this interval includes x and z, we have

$$
\begin{aligned}
\frac{z-y}{z-x} f(x)+\frac{y-x}{z-x} f(z) & \leq \frac{z-y}{z-x}(f(y)+\alpha(x-y))+\frac{y-x}{z-x}(f(y)+\alpha(z-y)) \\
& =f(y) .
\end{aligned}
$$

That is, f is a concave function. Continuity follows from the fact that any concave function on \mathbb{R} is automatically continuous.

Lemma (see e.g. https://math.stackexchange.com/a/615161 for picture). Any concave function f on \mathbb{R} is continuous.

Proof. Suppose we wish to prove continuity at $p \in \mathbb{R}$. Choose any real numbers a and b with $a<p<b$. For any $0<\varepsilon<\max (b-p, p-a)$ we always have

$$
f(p)+\frac{f(b)-f(p)}{b-p} \varepsilon \leq f(p+\varepsilon) \leq f(p)+\frac{f(p)-f(a)}{p-a} \varepsilon
$$

which implies right continuity; the proof for left continuity is the same.
Claim. The function f cannot have more than one supergradient at any given point.
Proof. Fix $y \in \mathbb{R}$. For $t>0$, let's define the function

$$
g(t)=\frac{f(y)-f(y-t)}{t}-\frac{f(y+t)-f(y)}{t} .
$$

We contend that $g(\varepsilon) \leq \frac{3}{5} g(3 \varepsilon)$ for any $\varepsilon>0$. Indeed by the problem condition,

$$
\begin{aligned}
& f(y) \leq f(y-\varepsilon)+\frac{f(y+\varepsilon)-f(y-3 \varepsilon)}{4} \\
& f(y) \leq f(y+\varepsilon)-\frac{f(y+3 \varepsilon)-f(y-\varepsilon)}{4} .
\end{aligned}
$$

Summing gives the desired conclusion.
Now suppose that f has two supergradients $\alpha<\alpha^{\prime}$ at point y. For small enough ε, we should have we have $f(y-\varepsilon) \leq f(y)-\alpha^{\prime} \varepsilon$ and $f(y+\varepsilon) \leq f(y)+\alpha \varepsilon$, hence

$$
g(\varepsilon)=\frac{f(y)-f(y-\varepsilon)}{\varepsilon}-\frac{f(y+\varepsilon)-f(y)}{\varepsilon} \geq \alpha^{\prime}-\alpha
$$

This is impossible since $g(\varepsilon)$ may be arbitrarily small.
Claim. The function f is quadratic on the rational numbers.
Proof. Consider any four-term arithmetic progression $x, x+d, x+2 d, x+3 d$. Because $(f(x+2 d)-f(x+d)) / d$ and $(f(x+3 d)-f(x)) / 3 d$ are both supergradients of f at the point $x+3 d / 2$, they must be equal, hence

$$
\begin{equation*}
f(x+3 d)-3 f(x+2 d)+3 f(x+d)-f(x)=0 \tag{1}
\end{equation*}
$$

If we fix $d=1 / n$, it follows inductively that f agrees with a quadratic function \tilde{f}_{n} on the set $\frac{1}{n} \mathbb{Z}$. On the other hand, for any $m \neq n$, we apparently have $\widetilde{f}_{n}=\widetilde{f}_{m n}=\tilde{f}_{m}$, so the quadratic functions on each "layer" are all equal.

Since f is continuous, it follows f is quadratic, as needed.
Remark (Alternate finish using differentiability due to Michael Ren). In the proof of the main claim (about uniqueness of supergradients), we can actually notice the two terms $\frac{f(y)-f(y-t)}{t}$ and $\frac{f(y+t)-f(y)}{t}$ in the definition of $g(t)$ are both monotonic (by concavity). Since we supplied a proof that $\lim _{t \rightarrow 0} g(t)=0$, we find f is differentiable.

Now, if the derivative at some point exists, it must coincide with all the supergradients; (informally, this is why "tangent line trick" always has the slope as the derivative, and formally, we use the mean value theorem). In other words, we must have

$$
f(x+y)-f(x-y)=2 f^{\prime}(x) \cdot y
$$

holds for all real numbers x and y. By choosing $y=1$ we obtain that $f^{\prime}(x)=f(x+1)-$ $f(x-1)$ which means f^{\prime} is also continuous.

Finally differentiating both sides with respect to y gives

$$
f^{\prime}(x+y)-f^{\prime}(x-y)=2 f^{\prime}(x)
$$

which means f^{\prime} obeys Jensen's functional equation. Since f^{\prime} is continuous, this means f^{\prime} is linear. Thus f is quadratic, as needed.

