USA TST 2021/2

Evan Chen

Twitch Solves ISL

Episode 56

Problem

Points $A, V_{1}, V_{2}, B, U_{2}, U_{1}$ lie fixed on a circle Γ, in that order, and such that $B U_{2}>$ $A U_{1}>B V_{2}>A V_{1}$.

Let X be a variable point on the arc $V_{1} V_{2}$ of Γ not containing A or B. Line $X A$ meets line $U_{1} V_{1}$ at C, while line $X B$ meets line $U_{2} V_{2}$ at D.

Prove there exists a fixed point K, independent of X, such that the power of K to the circumcircle of $\triangle X C D$ is constant.

Video

https://youtu.be/J3cOwLGB2ZY

External Link

https://aops.com/community/p20672623

Solution

For brevity, we let ℓ_{i} denote line $U_{i} V_{i}$ for $i=1,2$.
We first give an explicit description of the fixed point K. Let E and F be points on Γ such that $\overline{A E} \| \ell_{1}$ and $\overline{B F} \| \ell_{2}$. The problem conditions imply that E lies between U_{1} and A while F lies between U_{2} and B. Then we let

$$
K=\overline{A F} \cap \overline{B E}
$$

This point exists because $A E F B$ are the vertices of a convex quadrilateral.
Remark (How to identify the fixed point). If we drop the condition that X lies on the arc, then the choice above is motivated by choosing $X \in\{E, F\}$. Essentially, when one chooses $X \rightarrow E$, the point C approaches an infinity point. So in this degenerate case, the only points whose power is finite to $(X C D)$ are bounded are those on line $B E$. The same logic shows that K must lie on line $A F$. Therefore, if the problem is going to work, the fixed point must be exactly $\overline{A F} \cap \overline{B E}$.

We give two possible approaches for proving the power of K with respect to $(X C D)$ is fixed.

First approach by Vincent Huang. We need the following claim:
Claim. Suppose distinct lines $A C$ and $B D$ meet at X. Then for any point K

$$
\operatorname{pow}(K, X A B)+\operatorname{pow}(K, X C D)=\operatorname{pow}(K, X A D)+\operatorname{pow}(K, X B C)
$$

Proof. The difference between the left-hand side and right-hand side is a linear function in K, which vanishes at all of A, B, C, D.

Construct the points $P=\ell_{1} \cap \overline{B E}$ and $Q=\ell_{2} \cap \overline{A F}$, which do not depend on X.
Claim. Quadrilaterals $B P C X$ and $A Q D X$ are cyclic.
Proof. By Reim's theorem: $\measuredangle C P B=\measuredangle A E B=\measuredangle A X B=\measuredangle C X B$, etc.

Now, for the particular K we choose, we have

$$
\begin{aligned}
\operatorname{pow}(K, X C D) & =\operatorname{pow}(K, X A D)+\operatorname{pow}(K, X B C)-\operatorname{pow}(K, X A B) \\
& =K A \cdot K Q+K B \cdot K P-\operatorname{pow}(K, \Gamma)
\end{aligned}
$$

This is fixed, so the proof is completed.

Second approach by authors. Let Y be the second intersection of $(X C D)$ with Γ. Let $S=\overline{E Y} \cap \ell_{1}$ and $T=\overline{F Y} \cap \ell_{2}$.

Claim. Points S and T lies on ($X C D$) as well.
Proof. By Reim's theorem: $\measuredangle C S Y=\measuredangle A E Y=\measuredangle A X Y=\measuredangle C X Y$, etc.
Now let X^{\prime} be any other choice of X, and define C^{\prime} and D^{\prime} in the obvious way. We are going to show that K lies on the radical axis of $(X C D)$ and $\left(X^{\prime} C^{\prime} D^{\prime}\right)$.

The main idea is as follows:
Claim. The point $L=\overline{E Y} \cap \overline{A X^{\prime}}$ lies on the radical axis. By symmetry, so does the point $M=\overline{F Y} \cap \overline{B X^{\prime}}$ (not pictured).

Proof. Again by Reim's theorem, $S C^{\prime} Y X^{\prime}$ is cyclic. Hence we have

$$
\operatorname{pow}\left(L, X^{\prime} C^{\prime} D^{\prime}\right)=L C^{\prime} \cdot L X^{\prime}=L S \cdot L Y=\operatorname{pow}(L, X C D)
$$

To conclude, note that by Pascal theorem on

$$
E Y F A X^{\prime} B
$$

it follows K, L, M are collinear, as needed.
Remark. All the conditions about $U_{1}, V_{1}, U_{2}, V_{2}$ at the beginning are there to eliminate configuration issues, making the problem less obnoxious to the contestant.

In particular, without the various assumptions, there exist configurations in which the point K is at infinity. In these cases, the center of $X C D$ moves along a fixed line.

