USA TST 2021/1

Evan Chen

Twitch Solves ISL

Episode 56

Problem

Determine all integers $s \geq 4$ for which there exist positive integers a, b, c, d such that $s=a+b+c+d$ and s divides $a b c+a b d+a c d+b c d$.

Video

https://youtu.be/J3c0wLGB2ZY

External Link

https://aops.com/community/p20672573

Solution

The answer is s composite.
Composite construction. Write $s=(w+x)(y+z)$, where w, x, y, z are positive integers. Let $a=w y, b=w z, c=x y, d=x z$. Then

$$
a b c+a b d+a c d+b c d=w x y z(w+x)(y+z)
$$

so this works.
Prime proof. Choose suitable a, b, c, d. Then

$$
(a+b)(a+c)(a+d)=(a b c+a b d+a c d+b c d)+a^{2}(a+b+c+d) \equiv 0 \quad(\bmod s) .
$$

Hence s divides a product of positive integers less than s, so s is composite.
Remark. Here is another proof that s is composite.
Suppose that s is prime. Then the polynomial $(x-a)(x-b)(x-c)(x-d) \in \mathbb{F}_{s}[x]$ is even, so the roots come in two opposite pairs in \mathbb{F}_{s}. Thus the sum of each pair is at least s, so the sum of all four is at least $2 s>s$, contradiction.

